11,082 research outputs found

    Amorphous Placement and Retrieval of Sensory Data in Sparse Mobile Ad-Hoc Networks

    Full text link
    Abstract—Personal communication devices are increasingly being equipped with sensors that are able to passively collect information from their surroundings – information that could be stored in fairly small local caches. We envision a system in which users of such devices use their collective sensing, storage, and communication resources to query the state of (possibly remote) neighborhoods. The goal of such a system is to achieve the highest query success ratio using the least communication overhead (power). We show that the use of Data Centric Storage (DCS), or directed placement, is a viable approach for achieving this goal, but only when the underlying network is well connected. Alternatively, we propose, amorphous placement, in which sensory samples are cached locally and informed exchanges of cached samples is used to diffuse the sensory data throughout the whole network. In handling queries, the local cache is searched first for potential answers. If unsuccessful, the query is forwarded to one or more direct neighbors for answers. This technique leverages node mobility and caching capabilities to avoid the multi-hop communication overhead of directed placement. Using a simplified mobility model, we provide analytical lower and upper bounds on the ability of amorphous placement to achieve uniform field coverage in one and two dimensions. We show that combining informed shuffling of cached samples upon an encounter between two nodes, with the querying of direct neighbors could lead to significant performance improvements. For instance, under realistic mobility models, our simulation experiments show that amorphous placement achieves 10% to 40% better query answering ratio at a 25% to 35% savings in consumed power over directed placement.National Science Foundation (CNS Cybertrust 0524477, CNS NeTS 0520166, CNS ITR 0205294, EIA RI 0202067

    Amorphous Placement and Informed Diffusion for Timely Monitoring by Autonomous, Resource-Constrained, Mobile Sensors

    Full text link
    Personal communication devices are increasingly equipped with sensors for passive monitoring of encounters and surroundings. We envision the emergence of services that enable a community of mobile users carrying such resource-limited devices to query such information at remote locations in the field in which they collectively roam. One approach to implement such a service is directed placement and retrieval (DPR), whereby readings/queries about a specific location are routed to a node responsible for that location. In a mobile, potentially sparse setting, where end-to-end paths are unavailable, DPR is not an attractive solution as it would require the use of delay-tolerant (flooding-based store-carry-forward) routing of both readings and queries, which is inappropriate for applications with data freshness constraints, and which is incompatible with stringent device power/memory constraints. Alternatively, we propose the use of amorphous placement and retrieval (APR), in which routing and field monitoring are integrated through the use of a cache management scheme coupled with an informed exchange of cached samples to diffuse sensory data throughout the network, in such a way that a query answer is likely to be found close to the query origin. We argue that knowledge of the distribution of query targets could be used effectively by an informed cache management policy to maximize the utility of collective storage of all devices. Using a simple analytical model, we show that the use of informed cache management is particularly important when the mobility model results in a non-uniform distribution of users over the field. We present results from extensive simulations which show that in sparsely-connected networks, APR is more cost-effective than DPR, that it provides extra resilience to node failure and packet losses, and that its use of informed cache management yields superior performance

    Enabling stream processing for people-centric IoT based on the fog computing paradigm

    Get PDF
    The world of machine-to-machine (M2M) communication is gradually moving from vertical single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organizations and people - A world of Internet of Things (IoT). The dominant approach for delivering IoT applications relies on the development of cloud-based IoT platforms that collect all the data generated by the sensing elements and centrally process the information to create real business value. In this paper, we present a system that follows the Fog Computing paradigm where the sensor resources, as well as the intermediate layers between embedded devices and cloud computing datacenters, participate by providing computational, storage, and control. We discuss the design aspects of our system and present a pilot deployment for the evaluating the performance in a real-world environment. Our findings indicate that Fog Computing can address the ever-increasing amount of data that is inherent in an IoT world by effective communication among all elements of the architecture

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    NFV Based Gateways for Virtualized Wireless Sensors Networks: A Case Study

    Full text link
    Virtualization enables the sharing of a same wireless sensor network (WSN) by multiple applications. However, in heterogeneous environments, virtualized wireless sensor networks (VWSN) raises new challenges such as the need for on-the-fly, dynamic, elastic and scalable provisioning of gateways. Network Functions Virtualization (NFV) is an emerging paradigm that can certainly aid in tackling these new challenges. It leverages standard virtualization technology to consolidate special-purpose network elements on top of commodity hardware. This article presents a case study on NFV based gateways for VWSNs. In the study, a VWSN gateway provider, operates and manages an NFV based infrastructure. We use two different brands of wireless sensors. The NFV infrastructure makes possible the dynamic, elastic and scalable deployment of gateway modules in this heterogeneous VWSN environment. The prototype built with Openstack as platform is described

    Scalable bloom-filter based content dissemination in community networks using information centric principles

    Get PDF
    Information-Centric Networking (ICN) is a new communication paradigm that shifts the focus from content location to content objects themselves. Users request the content by its name or some other form of identifier. Then, the network is responsible for locating the requested content and sending it to the users. Despite a large number of works on ICN in recent years, the problem of scalability of ICN systems has not been studied and addressed adequately. This is especially true when considering real-world deployments and the so-called alternative networks such as community networks. In this work, we explore the applicability of ICN principles in the challenging and unpredictable environments of community networks. In particular, we focus on stateless content dissemination based on Bloom filters (BFs). We highlight the scalability limitations of the classical single-stage BF based approach and argue that by enabling multiple BF stages would lead to performance enhancements. That is, a multi-stage BF based content dissemination mechanism could support large network topologies with heterogeneous traffic and diverse channel conditions. In addition to scalability improvements, this approach also is more secure with regard to Denial of Service attacks
    corecore