4,699 research outputs found

    Threat Assessment for Multistage Cyber Attacks in Smart Grid Communication Networks

    Get PDF
    In smart grids, managing and controlling power operations are supported by information and communication technology (ICT) and supervisory control and data acquisition (SCADA) systems. The increasing adoption of new ICT assets in smart grids is making smart grids vulnerable to cyber threats, as well as raising numerous concerns about the adequacy of current security approaches. As a single act of penetration is often not sufficient for an attacker to achieve his/her goal, multistage cyber attacks may occur. Due to the interdependence between the power grid and the communication network, a multistage cyber attack not only affects the cyber system but impacts the physical system. This thesis investigates an application-oriented stochastic game-theoretic cyber threat assessment framework, which is strongly related to the information security risk management process as standardized in ISO/IEC 27005. The proposed cyber threat assessment framework seeks to address the specific challenges (e.g., dynamic changing attack scenarios and understanding cascading effects) when performing threat assessments for multistage cyber attacks in smart grid communication networks. The thesis looks at the stochastic and dynamic nature of multistage cyber attacks in smart grid use cases and develops a stochastic game-theoretic model to capture the interactions of the attacker and the defender in multistage attack scenarios. To provide a flexible and practical payoff formulation for the designed stochastic game-theoretic model, this thesis presents a mathematical analysis of cascading failure propagation (including both interdependency cascading failure propagation and node overloading cascading failure propagation) in smart grids. In addition, the thesis quantifies the characterizations of disruptive effects of cyber attacks on physical power grids. Furthermore, this thesis discusses, in detail, the ingredients of the developed stochastic game-theoretic model and presents the implementation steps of the investigated stochastic game-theoretic cyber threat assessment framework. An application of the proposed cyber threat assessment framework for evaluating a demonstrated multistage cyber attack scenario in smart grids is shown. The cyber threat assessment framework can be integrated into an existing risk management process, such as ISO 27000, or applied as a standalone threat assessment process in smart grid use cases

    Multi-Layer Cyber-Physical Security and Resilience for Smart Grid

    Full text link
    The smart grid is a large-scale complex system that integrates communication technologies with the physical layer operation of the energy systems. Security and resilience mechanisms by design are important to provide guarantee operations for the system. This chapter provides a layered perspective of the smart grid security and discusses game and decision theory as a tool to model the interactions among system components and the interaction between attackers and the system. We discuss game-theoretic applications and challenges in the design of cross-layer robust and resilient controller, secure network routing protocol at the data communication and networking layers, and the challenges of the information security at the management layer of the grid. The chapter will discuss the future directions of using game-theoretic tools in addressing multi-layer security issues in the smart grid.Comment: 16 page

    Unsplittable Load Balancing in a Network of Charging Stations Under QoS Guarantees

    Get PDF
    The operation of the power grid is becoming more stressed, due to the addition of new large loads represented by Electric Vehicles (EVs) and a more intermittent supply due to the incorporation of renewable sources. As a consequence, the coordination and control of projected EV demand in a network of fast charging stations becomes a critical and challenging problem. In this paper, we introduce a game theoretic based decentralized control mechanism to alleviate negative impacts from the EV demand. The proposed mechanism takes into consideration the non-uniform spatial distribution of EVs that induces uneven power demand at each charging facility, and aims to: (i) avoid straining grid resources by offering price incentives so that customers accept being routed to less busy stations, (ii) maximize total revenue by serving more customers with the same amount of grid resources, and (iii) provide charging service to customers with a certain level of Quality-of-Service (QoS), the latter defined as the long term customer blocking probability. We examine three scenarios of increased complexity that gradually approximate real world settings. The obtained results show that the proposed framework leads to substantial performance improvements in terms of the aforementioned goals, when compared to current state of affairs.Comment: Accepted for Publication in IEEE Transactions on Smart Gri
    • …
    corecore