746 research outputs found

    Stochastic Discriminative EM

    Full text link
    Stochastic discriminative EM (sdEM) is an online-EM-type algorithm for discriminative training of probabilistic generative models belonging to the exponential family. In this work, we introduce and justify this algorithm as a stochastic natural gradient descent method, i.e. a method which accounts for the information geometry in the parameter space of the statistical model. We show how this learning algorithm can be used to train probabilistic generative models by minimizing different discriminative loss functions, such as the negative conditional log-likelihood and the Hinge loss. The resulting models trained by sdEM are always generative (i.e. they define a joint probability distribution) and, in consequence, allows to deal with missing data and latent variables in a principled way either when being learned or when making predictions. The performance of this method is illustrated by several text classification problems for which a multinomial naive Bayes and a latent Dirichlet allocation based classifier are learned using different discriminative loss functions.Comment: UAI 2014 paper + Supplementary Material. In Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence (UAI 2014), edited by Nevin L. Zhang and Jian Tian. AUAI Pres

    Shuffled Multi-Channel Sparse Signal Recovery

    Full text link
    Mismatches between samples and their respective channel or target commonly arise in several real-world applications. For instance, whole-brain calcium imaging of freely moving organisms, multiple-target tracking or multi-person contactless vital sign monitoring may be severely affected by mismatched sample-channel assignments. To systematically address this fundamental problem, we pose it as a signal reconstruction problem where we have lost correspondences between the samples and their respective channels. Assuming that we have a sensing matrix for the underlying signals, we show that the problem is equivalent to a structured unlabeled sensing problem, and establish sufficient conditions for unique recovery. To the best of our knowledge, a sampling result for the reconstruction of shuffled multi-channel signals has not been considered in the literature and existing methods for unlabeled sensing cannot be directly applied. We extend our results to the case where the signals admit a sparse representation in an overcomplete dictionary (i.e., the sensing matrix is not precisely known), and derive sufficient conditions for the reconstruction of shuffled sparse signals. We propose a robust reconstruction method that combines sparse signal recovery with robust linear regression for the two-channel case. The performance and robustness of the proposed approach is illustrated in an application related to whole-brain calcium imaging. The proposed methodology can be generalized to sparse signal representations other than the ones considered in this work to be applied in a variety of real-world problems with imprecise measurement or channel assignment.Comment: Submitted to TS
    corecore