6 research outputs found

    Preliminary remarks on option pricing and dynamic hedging

    Full text link
    An elementary arbitrage principle and the existence of trends in financial time series, which is based on a theorem published in 1995 by P. Cartier and Y. Perrin, lead to a new understanding of option pricing and dynamic hedging. Intricate problems related to violent behaviors of the underlying, like the existence of jumps, become then quite straightforward by incorporating them into the trends. Several convincing computer experiments are reported.Comment: 1st International Conference on Systems and Computer Science, Villeneuve d'Ascq : France (2012

    Hedging of Financial Derivative Contracts via Monte Carlo Tree Search

    Full text link
    The construction of approximate replication strategies for derivative contracts in incomplete markets is a key problem of financial engineering. Recently Reinforcement Learning algorithms for pricing and hedging under realistic market conditions have attracted significant interest. While financial research mostly focused on variations of QQ-learning, in Artificial Intelligence Monte Carlo Tree Search is the recognized state-of-the-art method for various planning problems, such as the games of Hex, Chess, Go,... This article introduces Monte Carlo Tree Search as a method to solve the stochastic optimal control problem underlying the pricing and hedging of financial derivatives. As compared to QQ-learning it combines reinforcement learning with tree search techniques. As a consequence Monte Carlo Tree Search has higher sample efficiency, is less prone to over-fitting to specific market models and generally learns stronger policies faster. In our experiments we find that Monte Carlo Tree Search, being the world-champion in games like Chess and Go, is easily capable of directly maximizing the utility of investor's terminal wealth without an intermediate mathematical theory.Comment: Added figures. Added references. Corrected typos. 15 pages, 5 figure

    user's guide to viscosity solutions of second order partial differential equations

    Get PDF
    The notion of viscosity solutions of scalar fully nonlinear partial differential equations of second order provides a framework in which startling comparison and uniqueness theorems, existence theorems, and theorems about continuous dependence may now be proved by very efficient and striking arguments. The range of important applications of these results is enormous. This article is a self-contained exposition of the basic theory of viscosity solutions.Comment: 67 page
    corecore