1,090 research outputs found

    Quantifying Aspect Bias in Ordinal Ratings using a Bayesian Approach

    Full text link
    User opinions expressed in the form of ratings can influence an individual's view of an item. However, the true quality of an item is often obfuscated by user biases, and it is not obvious from the observed ratings the importance different users place on different aspects of an item. We propose a probabilistic modeling of the observed aspect ratings to infer (i) each user's aspect bias and (ii) latent intrinsic quality of an item. We model multi-aspect ratings as ordered discrete data and encode the dependency between different aspects by using a latent Gaussian structure. We handle the Gaussian-Categorical non-conjugacy using a stick-breaking formulation coupled with P\'{o}lya-Gamma auxiliary variable augmentation for a simple, fully Bayesian inference. On two real world datasets, we demonstrate the predictive ability of our model and its effectiveness in learning explainable user biases to provide insights towards a more reliable product quality estimation.Comment: Accepted for publication in IJCAI 201

    Reparameterizing the Birkhoff Polytope for Variational Permutation Inference

    Full text link
    Many matching, tracking, sorting, and ranking problems require probabilistic reasoning about possible permutations, a set that grows factorially with dimension. Combinatorial optimization algorithms may enable efficient point estimation, but fully Bayesian inference poses a severe challenge in this high-dimensional, discrete space. To surmount this challenge, we start with the usual step of relaxing a discrete set (here, of permutation matrices) to its convex hull, which here is the Birkhoff polytope: the set of all doubly-stochastic matrices. We then introduce two novel transformations: first, an invertible and differentiable stick-breaking procedure that maps unconstrained space to the Birkhoff polytope; second, a map that rounds points toward the vertices of the polytope. Both transformations include a temperature parameter that, in the limit, concentrates the densities on permutation matrices. We then exploit these transformations and reparameterization gradients to introduce variational inference over permutation matrices, and we demonstrate its utility in a series of experiments

    From here to infinity - sparse finite versus Dirichlet process mixtures in model-based clustering

    Get PDF
    In model-based-clustering mixture models are used to group data points into clusters. A useful concept introduced for Gaussian mixtures by Malsiner Walli et al (2016) are sparse finite mixtures, where the prior distribution on the weight distribution of a mixture with KK components is chosen in such a way that a priori the number of clusters in the data is random and is allowed to be smaller than KK with high probability. The number of cluster is then inferred a posteriori from the data. The present paper makes the following contributions in the context of sparse finite mixture modelling. First, it is illustrated that the concept of sparse finite mixture is very generic and easily extended to cluster various types of non-Gaussian data, in particular discrete data and continuous multivariate data arising from non-Gaussian clusters. Second, sparse finite mixtures are compared to Dirichlet process mixtures with respect to their ability to identify the number of clusters. For both model classes, a random hyper prior is considered for the parameters determining the weight distribution. By suitable matching of these priors, it is shown that the choice of this hyper prior is far more influential on the cluster solution than whether a sparse finite mixture or a Dirichlet process mixture is taken into consideration.Comment: Accepted versio

    Bayesian learning of joint distributions of objects

    Full text link
    There is increasing interest in broad application areas in defining flexible joint models for data having a variety of measurement scales, while also allowing data of complex types, such as functions, images and documents. We consider a general framework for nonparametric Bayes joint modeling through mixture models that incorporate dependence across data types through a joint mixing measure. The mixing measure is assigned a novel infinite tensor factorization (ITF) prior that allows flexible dependence in cluster allocation across data types. The ITF prior is formulated as a tensor product of stick-breaking processes. Focusing on a convenient special case corresponding to a Parafac factorization, we provide basic theory justifying the flexibility of the proposed prior and resulting asymptotic properties. Focusing on ITF mixtures of product kernels, we develop a new Gibbs sampling algorithm for routine implementation relying on slice sampling. The methods are compared with alternative joint mixture models based on Dirichlet processes and related approaches through simulations and real data applications.Comment: Appearing in Proceedings of the 16th International Conference on Artificial Intelligence and Statistics (AISTATS) 2013, Scottsdale, AZ, US
    corecore