37 research outputs found

    Seven ways to improve example-based single image super resolution

    Full text link
    In this paper we present seven techniques that everybody should know to improve example-based single image super resolution (SR): 1) augmentation of data, 2) use of large dictionaries with efficient search structures, 3) cascading, 4) image self-similarities, 5) back projection refinement, 6) enhanced prediction by consistency check, and 7) context reasoning. We validate our seven techniques on standard SR benchmarks (i.e. Set5, Set14, B100) and methods (i.e. A+, SRCNN, ANR, Zeyde, Yang) and achieve substantial improvements.The techniques are widely applicable and require no changes or only minor adjustments of the SR methods. Moreover, our Improved A+ (IA) method sets new state-of-the-art results outperforming A+ by up to 0.9dB on average PSNR whilst maintaining a low time complexity.Comment: 9 page

    Cascaded Detail-Preserving Networks for Super-Resolution of Document Images

    Full text link
    The accuracy of OCR is usually affected by the quality of the input document image and different kinds of marred document images hamper the OCR results. Among these scenarios, the low-resolution image is a common and challenging case. In this paper, we propose the cascaded networks for document image super-resolution. Our model is composed by the Detail-Preserving Networks with small magnification. The loss function with perceptual terms is designed to simultaneously preserve the original patterns and enhance the edge of the characters. These networks are trained with the same architecture and different parameters and then assembled into a pipeline model with a larger magnification. The low-resolution images can upscale gradually by passing through each Detail-Preserving Network until the final high-resolution images. Through extensive experiments on two scanning document image datasets, we demonstrate that the proposed approach outperforms recent state-of-the-art image super-resolution methods, and combining it with standard OCR system lead to signification improvements on the recognition results

    Learning Deep CNN Denoiser Prior for Image Restoration

    Full text link
    Model-based optimization methods and discriminative learning methods have been the two dominant strategies for solving various inverse problems in low-level vision. Typically, those two kinds of methods have their respective merits and drawbacks, e.g., model-based optimization methods are flexible for handling different inverse problems but are usually time-consuming with sophisticated priors for the purpose of good performance; in the meanwhile, discriminative learning methods have fast testing speed but their application range is greatly restricted by the specialized task. Recent works have revealed that, with the aid of variable splitting techniques, denoiser prior can be plugged in as a modular part of model-based optimization methods to solve other inverse problems (e.g., deblurring). Such an integration induces considerable advantage when the denoiser is obtained via discriminative learning. However, the study of integration with fast discriminative denoiser prior is still lacking. To this end, this paper aims to train a set of fast and effective CNN (convolutional neural network) denoisers and integrate them into model-based optimization method to solve other inverse problems. Experimental results demonstrate that the learned set of denoisers not only achieve promising Gaussian denoising results but also can be used as prior to deliver good performance for various low-level vision applications.Comment: Accepted to CVPR 2017. Code: https://github.com/cszn/ircn
    corecore