925 research outputs found

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Components of Soft Computing for Epileptic Seizure Prediction and Detection

    Get PDF
    Components of soft computing include machine learning, fuzzy logic, evolutionary computation, and probabilistic theory. These components have the cognitive ability to learn effectively. They deal with imprecision and good tolerance of uncertainty. Components of soft computing are needed for developing automated expert systems. These systems reduce human interventions so as to complete a task essentially. Automated expert systems are developed in order to perform difficult jobs. The systems have been trained and tested using soft computing techniques. These systems are required in all kinds of fields and are especially very useful in medical diagnosis. This chapter describes the components of soft computing and review of some analyses regarding EEG signal classification. From those analyses, this chapter concludes that a number of features extracted are very important and relevant features for classifier can give better accuracy of classification. The classifier with a suitable learning method can perform well for automated epileptic seizure detection systems. Further, the decomposition of EEG signal at level 4 is sufficient for seizure detection

    Texture Feature Based Analysis of Segmenting Soft Tissues from Brain CT Images using BAM type Artificial Neural Network

    Get PDF
    Soft tissues segmentation from brain computed tomography image data is an important but time consuming task performed manually by medical experts. Automating this process is challenging due to the high diversity in appearance of tumor tissue among different patients and in many cases, similarity between tumor and normal tissue. A computer software system is designed for the automatic segmentation  of brain CT images. Image analysis methods were applied to the images of 30 normal and 25 benign,25 malignant images. Textural features extracted from the gray level co-occurrence matrix of the brain CT images and bidirectional associative memory were employed for the design of the system. Best classification accuracy was achieved by four textural features and BAM type ANN classifier. The proposed system provides new textural information and segmenting normal and benign, malignant tumor images, especially in small tumor regions of CT images efficiently and accurately with lesser computational time. Keywords: Bidirectional Associative Memory classifier(BAM), Computed Tomography (CT), Gray Level Co-occurrence Matrix (GLCM), Artificial Neural Network (ANN)

    Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review

    No full text
    International audienceProstate cancer is the second most diagnosed cancer of men all over the world. In the last decades, new imaging techniques based on Magnetic Resonance Imaging (MRI) have been developed improving diagnosis.In practise, diagnosis can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. In this regard, computer-aided detection and computer-aided diagnosis systemshave been designed to help radiologists in their clinical practice. Research on computer-aided systems specifically focused for prostate cancer is a young technology and has been part of a dynamic field ofresearch for the last ten years. This survey aims to provide a comprehensive review of the state of the art in this lapse of time, focusing on the different stages composing the work-flow of a computer-aidedsystem. We also provide a comparison between studies and a discussion about the potential avenues for future research. In addition, this paper presents a new public online dataset which is made available to theresearch community with the aim of providing a common evaluation framework to overcome some of the current limitations identified in this survey

    Special issue on signal processing and machine learning for biomedical data

    Get PDF
    This Special Issue is focused on advanced techniques in signal processing, analysis, modelling, and classification, applied to a variety of medical diagnostic problems. Biomedical data play a fundamental role in many fields of research and clinical practice. Very often the complexity of these data and their large volume makes it necessary to develop advanced analysis techniques and systems. Furthermore, the introduction of new techniques and methodologies for diagnostic purposes, especially in the field of medical imaging, requires new signal processing and machine learning methods. The recent progress in machine learning techniques, and in particular deep learning, revolutionized various fields of artificial vision, significantly pushing the state of the art of artificial vision systems into a wide range of high-level tasks. Such progress can help address problems in the analysis of biomedical data.This Special Issue placed particular emphasis on contributions dealing with practical, applications-led research, on the use of methods and devices in clinical diagnosis. The works that make up this special issue show a remarkable variety of applications for the detection and classification of medical imaging problems. In particular, the aforementioned works can be divided on the basis of types of techniques used, into three categories—signal processing (SP) methods, traditional machine learning (ML) methods, and deep learning (DL) methods

    Data mining in manufacturing: a review based on the kind of knowledge

    Get PDF
    In modern manufacturing environments, vast amounts of data are collected in database management systems and data warehouses from all involved areas, including product and process design, assembly, materials planning, quality control, scheduling, maintenance, fault detection etc. Data mining has emerged as an important tool for knowledge acquisition from the manufacturing databases. This paper reviews the literature dealing with knowledge discovery and data mining applications in the broad domain of manufacturing with a special emphasis on the type of functions to be performed on the data. The major data mining functions to be performed include characterization and description, association, classification, prediction, clustering and evolution analysis. The papers reviewed have therefore been categorized in these five categories. It has been shown that there is a rapid growth in the application of data mining in the context of manufacturing processes and enterprises in the last 3 years. This review reveals the progressive applications and existing gaps identified in the context of data mining in manufacturing. A novel text mining approach has also been used on the abstracts and keywords of 150 papers to identify the research gaps and find the linkages between knowledge area, knowledge type and the applied data mining tools and techniques

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations
    • …
    corecore