4,974 research outputs found

    Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

    Full text link
    Malware analysis and detection techniques have been evolving during the last decade as a reflection to development of different malware techniques to evade network-based and host-based security protections. The fast growth in variety and number of malware species made it very difficult for forensics investigators to provide an on time response. Therefore, Machine Learning (ML) aided malware analysis became a necessity to automate different aspects of static and dynamic malware investigation. We believe that machine learning aided static analysis can be used as a methodological approach in technical Cyber Threats Intelligence (CTI) rather than resource-consuming dynamic malware analysis that has been thoroughly studied before. In this paper, we address this research gap by conducting an in-depth survey of different machine learning methods for classification of static characteristics of 32-bit malicious Portable Executable (PE32) Windows files and develop taxonomy for better understanding of these techniques. Afterwards, we offer a tutorial on how different machine learning techniques can be utilized in extraction and analysis of a variety of static characteristic of PE binaries and evaluate accuracy and practical generalization of these techniques. Finally, the results of experimental study of all the method using common data was given to demonstrate the accuracy and complexity. This paper may serve as a stepping stone for future researchers in cross-disciplinary field of machine learning aided malware forensics.Comment: 37 Page

    Malware Detection using Machine Learning and Deep Learning

    Full text link
    Research shows that over the last decade, malware has been growing exponentially, causing substantial financial losses to various organizations. Different anti-malware companies have been proposing solutions to defend attacks from these malware. The velocity, volume, and the complexity of malware are posing new challenges to the anti-malware community. Current state-of-the-art research shows that recently, researchers and anti-virus organizations started applying machine learning and deep learning methods for malware analysis and detection. We have used opcode frequency as a feature vector and applied unsupervised learning in addition to supervised learning for malware classification. The focus of this tutorial is to present our work on detecting malware with 1) various machine learning algorithms and 2) deep learning models. Our results show that the Random Forest outperforms Deep Neural Network with opcode frequency as a feature. Also in feature reduction, Deep Auto-Encoders are overkill for the dataset, and elementary function like Variance Threshold perform better than others. In addition to the proposed methodologies, we will also discuss the additional issues and the unique challenges in the domain, open research problems, limitations, and future directions.Comment: 11 Pages and 3 Figure

    An investigation of a deep learning based malware detection system

    Full text link
    We investigate a Deep Learning based system for malware detection. In the investigation, we experiment with different combination of Deep Learning architectures including Auto-Encoders, and Deep Neural Networks with varying layers over Malicia malware dataset on which earlier studies have obtained an accuracy of (98%) with an acceptable False Positive Rates (1.07%). But these results were done using extensive man-made custom domain features and investing corresponding feature engineering and design efforts. In our proposed approach, besides improving the previous best results (99.21% accuracy and a False Positive Rate of 0.19%) indicates that Deep Learning based systems could deliver an effective defense against malware. Since it is good in automatically extracting higher conceptual features from the data, Deep Learning based systems could provide an effective, general and scalable mechanism for detection of existing and unknown malware.Comment: 13 Pages, 4 figure

    Survey of Machine Learning Techniques for Malware Analysis

    Get PDF
    Coping with malware is getting more and more challenging, given their relentless growth in complexity and volume. One of the most common approaches in literature is using machine learning techniques, to automatically learn models and patterns behind such complexity, and to develop technologies for keeping pace with the speed of development of novel malware. This survey aims at providing an overview on the way machine learning has been used so far in the context of malware analysis. We systematize surveyed papers according to their objectives (i.e., the expected output, what the analysis aims to), what information about malware they specifically use (i.e., the features), and what machine learning techniques they employ (i.e., what algorithm is used to process the input and produce the output). We also outline a number of problems concerning the datasets used in considered works, and finally introduce the novel concept of malware analysis economics, regarding the study of existing tradeoffs among key metrics, such as analysis accuracy and economical costs
    • …
    corecore