3 research outputs found

    Control of feedback for assistive listening devices

    Get PDF
    Acoustic feedback refers to the undesired acoustic coupling between the loudspeaker and microphone in hearing aids. This feedback channel poses limitations to the normal operation of hearing aids under varying acoustic scenarios. This work makes contributions to improve the performance of adaptive feedback cancellation techniques and speech quality in hearing aids. For this purpose a two microphone approach is proposed and analysed; and probe signal injection methods are also investigated and improved upon

    Subjective evaluation and electroacoustic theoretical validation of a new approach to audio upmixing

    Get PDF
    Audio signal processing systems for converting two-channel (stereo) recordings to four or five channels are increasingly relevant. These audio upmixers can be used with conventional stereo sound recordings and reproduced with multichannel home theatre or automotive loudspeaker audio systems to create a more engaging and natural-sounding listening experience. This dissertation discusses existing approaches to audio upmixing for recordings of musical performances and presents specific design criteria for a system to enhance spatial sound quality. A new upmixing system is proposed and evaluated according to these criteria and a theoretical model for its behavior is validated using empirical measurements.The new system removes short-term correlated components from two electronic audio signals using a pair of adaptive filters, updated according to a frequency domain implementation of the normalized-least-means-square algorithm. The major difference of the new system with all extant audio upmixers is that unsupervised time-alignment of the input signals (typically, by up to +/-10 ms) as a function of frequency (typically, using a 1024-band equalizer) is accomplished due to the non-minimum phase adaptive filter. Two new signals are created from the weighted difference of the inputs, and are then radiated with two loudspeakers behind the listener. According to the consensus in the literature on the effect of interaural correlation on auditory image formation, the self-orthogonalizing properties of the algorithm ensure minimal distortion of the frontal source imagery and natural-sounding, enveloping reverberance (ambiance) imagery.Performance evaluation of the new upmix system was accomplished in two ways: Firstly, using empirical electroacoustic measurements which validate a theoretical model of the system; and secondly, with formal listening tests which investigated auditory spatial imagery with a graphical mapping tool and a preference experiment. Both electroacoustic and subjective methods investigated system performance with a variety of test stimuli for solo musical performances reproduced using a loudspeaker in an orchestral concert-hall and recorded using different microphone techniques.The objective and subjective evaluations combined with a comparative study with two commercial systems demonstrate that the proposed system provides a new, computationally practical, high sound quality solution to upmixing

    A Spectral Slit Approach to Doubletalk Detection

    No full text
    A new class of doubletalk detector based on exploiting a spectral slit is proposed. This is achieved by spectrally deleting a frequency band in the far-end signal such that when the near-end signal is present, only the near-end spectral information is present. The proposed method relies solely on the detection of speech activity period in the slit area, and significantly, it requires no estimation of the echo path. Evaluation in typical acoustic echo setups shows that the proposed method outperforms other conventional doubletalk detectors in terms of probability of miss detection even under poor echo to noise ratio (ENR), low echo to far-end ratio (EFR) conditions and echo path change
    corecore