727 research outputs found

    Book of Abstracts & Lead Articles The Second International Symposium Remote Sensing for Ecosystem Analysis and Fisheries

    Get PDF
    SAFARI (Societal Applications in Fisheries and Aquaculture using Remotely-Sensed Imagery) is an initiative which provides a forum for coordination, at the international level, of activities in global fisheries research and management. The forum is open to all interested parties, including policy makers, research scientists, government managers, and those involved in the fishing industries. SAFARI organizes international workshops and symposia as a platform to discuss the latest research in Earth observation and fisheries management, information sessions aimed at the fisheries industry, government officials and resource managers, representation at policy meetings, and producing publications relevant to the activities. SAFARI gains worldwide attention through collaboration with other international networks, such as ChloroGIN (Chlorophyll Global Integrated Network), IOCCG (International Ocean-Colour Coordinating Group), POGO (Partnership for Observation of the Global Oceans) and the oceans and society: Blue Planet Initiative of the intergovernmental organization, the Group on Earth Observations (GEO)

    STUDY ON POTENTIAL FISHING ZONES (PFZ) INFORMATION BASED ON S-NPP VIIRS AND HIMAWARI-8 SATELLITES DATA

    Get PDF
    Sea surface temperature (SST) data from S-NPP VIIRS satellite has different spatial resolution with SST data from Himawari-8 satellite. In this study comparative analysis of potential fishing zones information from both satellites has been conducted. The analysis was conducted on three project areas (PA 7, PA 13, PA 19) as a representation Indonesian territorial waters. The data used were daily  for both satellites with a period  time from August 2016 to December 2016. The method used was Single Image Detection (SIED) to detect thermal fronts. Method of mass center point for determining potential fishing zones coordinate point from result thermal front detection. Furthermore, an analysis of overlapping was done to compare the coordinate point information from both satellites. Based on data analysis that had been done, the result showed that potential fishing zones coordinate points of Himawari-8 satellite was mostly far from potential fishing zones coordinate point of S-NPP VIIRS. The coordinate points whose positionswere close together or nearly same from both satellites was only about 20 %. Differences in potential fishing zones coordinate positions occur due to the effect of different spatial resolutions of both satellite data and the size of the front thermal events that had high variability. The ideal potential fishing zones coordinate points information was probably a combination of the potential fishing zones coordinate points of S-NPP VIIRS and Himawari-8 by making two adjacent coordinate points to be a single coordinate point. Field validation testing was required to prove the accuracy of the coordinate point

    Reviewing evidence of marine ecosystem change off South Africa

    Get PDF
    Recent changes have been observed in South African marine ecosystems. The main pressures on these ecosystems are fishing, climate change, pollution, ocean acidification and mining. The best long-term datasets are for trends in fishing pressures but there are many gaps, especially for non-commercial species. Fishing pressures have varied over time, depending on the species being caught. Little information exists for trends in other anthropogenic pressures. Field observations of environmental variables are limited in time and space. Remotely sensed satellite data have improved spatial and temporal coverage but the time-series are still too short to distinguish long-term trends from interannual and decadal variability. There are indications of recent cooling on the West and South coasts and warming on the East Coast over a period of 20 - 30 years. Oxygen concentrations on the West Coast have decreased over this period. Observed changes in offshore marine communities include southward and eastward changes in species distributions, changes in abundance of species, and probable alterations in foodweb dynamics. Causes of observed changes are difficult to attribute. Full understanding of marine ecosystem change requires ongoing and effective data collection, management and archiving, and coordination in carrying out ecosystem research.DHE

    Observation of Fish Dissemination Pattern on Madura Coastal Using Segmentation of Satellite Images

    Get PDF
    Almost traditional fishermen still use manual methods to catch fish that rely on experience in fishing and information among fellow fishermen. This method is not effective for maximizing fish production. A good pattern or strategy is needed to increase fish production. In determining dissemination pattern of fish, it can be predicted from physical parameters such as temperature, salinity, chlorophyll, turbidity, total suspended solids, and colored dissolved organic matter using the Landsat 8 images.  This research area is on the Island of Madura Coast. The pattern is determined by using Lagrange Interpolation and clustering using K-Means. The results of the study of the pattern of fish dissemination were then validated with data from the Dinas Kelautan dan Perikanan Jawa Timur. The results between fish patterns and validation data in 2015 showed similarities in January, February, March, May, June, July, August, September. In 2016, results between fish patterns and validation data showed that similarities in July, August, September, and December. In 2017, results between fish patterns and validation data showed similarities in November. 2015 has the most similarities between the patterns and validation data and the least similarity are 2017

    Spatial-Temporal Data Mining for Ocean Science: Data, Methodologies, and Opportunities

    Full text link
    With the increasing amount of spatial-temporal~(ST) ocean data, numerous spatial-temporal data mining (STDM) studies have been conducted to address various oceanic issues, e.g., climate forecasting and disaster warning. Compared with typical ST data (e.g., traffic data), ST ocean data is more complicated with some unique characteristics, e.g., diverse regionality and high sparsity. These characteristics make it difficult to design and train STDM models. Unfortunately, an overview of these studies is still missing, hindering computer scientists to identify the research issues in ocean while discouraging researchers in ocean science from applying advanced STDM techniques. To remedy this situation, we provide a comprehensive survey to summarize existing STDM studies in ocean. Concretely, we first summarize the widely-used ST ocean datasets and identify their unique characteristics. Then, typical ST ocean data quality enhancement techniques are discussed. Next, we classify existing STDM studies for ocean into four types of tasks, i.e., prediction, event detection, pattern mining, and anomaly detection, and elaborate the techniques for these tasks. Finally, promising research opportunities are highlighted. This survey will help scientists from the fields of both computer science and ocean science have a better understanding of the fundamental concepts, key techniques, and open challenges of STDM in ocean

    Status and management of tropical coastal fisheries in Asia

    Get PDF
    Coastal fisheries, Fishery management, Stock assessment, Conferences, Asia,

    Abundance and species diversity hotspots of tracked marine predators across the North American Arctic

    Get PDF
    Aim: Climate change is altering marine ecosystems worldwide and is most pronounced in the Arctic. Economic development is increasing leading to more disturbances and pressures on Arctic wildlife. Identifying areas that support higher levels of predator abundance and biodiversity is important for the implementation of targeted conservation measures across the Arctic. Location: Primarily Canadian Arctic marine waters but also parts of the United States, Greenland and Russia. Methods: We compiled the largest data set of existing telemetry data for marine predators in the North American Arctic consisting of 1,283 individuals from 21 species. Data were arranged into four species groups: (a) cetaceans and pinnipeds, (b) polar bears Ursus maritimus (c) seabirds, and (d) fishes to address the following objectives: (a) to identify abundance hotspots for each species group in the summer–autumn and winter–spring; (b) to identify species diversity hotspots across all species groups and extent of overlap with exclusive economic zones; and (c) to perform a gap analysis that assesses amount of overlap between species diversity hotspots with existing protected areas. Results: Abundance and species diversity hotpots during summer–autumn and winter–spring were identified in Baffin Bay, Davis Strait, Hudson Bay, Hudson Strait, Amundsen Gulf, and the Beaufort, Chukchi and Bering seas both within and across species groups. Abundance and species diversity hotpots occurred within the continental slope in summer–autumn and offshore in areas of moving pack ice in winter–spring. Gap analysis revealed that the current level of conservation protection that overlaps species diversity hotspots is low covering only 5% (77,498 km 2 ) in summer–autumn and 7% (83,202 km 2 ) in winter–spring. Main conclusions: We identified several areas of potential importance for Arctic marine predators that could provide policymakers with a starting point for conservation measures given the multitude of threats facing the Arctic. These results are relevant to multilevel and multinational governance to protect this vulnerable ecosystem in our rapidly changing world

    Data-mining social media platforms highlights conservation action for the Mediterranean Critically Endangered blue shark Prionace glauca

    Get PDF
    Abstract The Mediterranean Sea represents an area of elevated risk of extinction for sharks, where data deficiency is a pervasive problem. To compensate for such a paucity of information, this study investigated the use of social media content as a complementary approach to evaluate the distribution and habitat use of the Critically Endangered blue shark Prionace glauca in coastal waters, as well as public perceptions of the sharks. Through social media data mining a total of 146 records, comprising 158 individual blue sharks approaching Italian coastal waters, have been recorded from 2011 to 2020. This study revealed that, over the past decade, blue sharks regularly visited Italian coastal habitats for extended periods of time. Differences in the temporal distribution of blue sharks by sex and size appear to be linked to reproductive activity. The higher number of adult females approaching the shore in spring and the increase in young‐of‐the‐year (YOY) sightings in the following months possibly indicate parturition in coastal waters. Spatial analyses also showed that certain Italian coastal areas, such as those in Calabria and Puglia, were preferred coastal habitats for this species. Results also indicate that social media platforms can be considered an ever‐growing source of data on wildlife, which can shed light on the occurrence and distribution of endangered shark species in poorly known habitats. Furthermore, social media platforms should be used for awareness campaigns to educate the public, as this study showed that negative reactions to shark encounters remain widespread

    Course Manual Winter School on Structure and Functions of Marine Ecosystem: Fisheries

    Get PDF
    Marine ecosystems comprises of diverse organisms and their ambient abiotic components in varied relationships leading to an ecosystem functioning. These relationships provides the services that are essential for marine organisms to sustain in the nature. The studies examining the structure and functioning of these relationships remains unclear and hence understanding and modelling of the ecological functioning is imperative in the context of the threats different ecosystem components are facing. The relationship between marine population and their environment is complex and is subjected to fluctuations which affects the bottom level of an ecosystem pyramid to higher trophic levels. Understanding the energy flow within the marine ecosystems with the help of primary to secondary producers and secondary consumers are potentially important when assessing such states and changes in these environments. Many of the physiological changes are known to affect the key functional group, ie. the species or group of organisms, which play an important role in the health of the ecosystem. In marine environment, phytoplankton are the main functional forms which serves as the base of marine food web. Any change in the phytoplankton community structure may lead to alteration in the composition, size and structure of the entire ecosystem. Hence, it is critical to understand how these effects may scale up to population, communities, and entire marine ecosystem. Such changes are difficult to predict, particularly when more than one trophic level is affected. The identification and quantification of indicators of changes in ecosystem functioning and the knowledge base generated will provide a suitable way of bridging issues related to a specific ecosystem. New and meaningful indicators, derived from our current understanding of marine ecosystem functioning, can be used for assessing the impact of these changes and can be used as an aid in promoting responsible fisheries in marine ecosystems. Phytoplantkon is an indicator determining the colour of open Ocean. In recent years, new technologies have emerged which involves multidisciplinary activities including biogeochemistry and its dynamics affecting higher trophic levels including fishery. The winter school proposed will provide the insights into background required for such an approach involving teaching the theory, practical, analysis and interpretation techniques in understanding the structure and functioning of marine ecosystems from ground truth measurements as well as from satellite remote sensing data. This is organized with the full funding support from Indian council of Agricultural Research (ICAR) New Delhi and the 25 participants who are attending this programme has been selected after scrutiny of their applications based on their bio-data. The participants are from different States across Indian subcontinent covering north, east, west and south. They are serving as academicians such as Professors/ scientists and in similar posts. The training will be a feather in their career and will enable them to do their academic programmes in a better manner. Selected participants will be scrutinized initially to understand their knowledge level and classes will be oriented based on this. In addition, all of them will be provided with an e-manual based on the classes. All selected participants are provided with their travel and accommodation grants. The faculty include the scientists who developed this technology, those who are practicing it and few user groups who do their research in related areas. The programme is coordinated by the Fishery Resources Assessment Division of CMFRI. This programme will generate a team of elite academicians who can contribute to sustainable management of marine ecosystem and they will further contribute to capacity building in the sector by training many more interested researchers in the years to come
    corecore