250,984 research outputs found

    A Product Model of a Road

    Get PDF
    Many errors and delays frequently appear when data is exchanged between particular tasks in the lifecycle of the road. Inter-task connections are therefore of great importance for the quality of the final product. The article describes a product model of a road wich is the kernel of an integrated information system intended to support all important stages of the road lifecycle: design, evaluation (through different analysis procedures), construction, and maintainance. Since particular tasks are often executed at different places and in different companies, the interconnections are supported by a special metafile which contains all specific data of the product model. The concept of the integrated system is object and component oriented. Additionally, existing conventional program packages are included to support some common tasks (methods). A conventional relational database system as well as an open spatial database system with the relevant GIS functionality are included to support the data structures of the model

    A storage and access architecture for efficient query processing in spatial database systems

    Get PDF
    Due to the high complexity of objects and queries and also due to extremely large data volumes, geographic database systems impose stringent requirements on their storage and access architecture with respect to efficient query processing. Performance improving concepts such as spatial storage and access structures, approximations, object decompositions and multi-phase query processing have been suggested and analyzed as single building blocks. In this paper, we describe a storage and access architecture which is composed from the above building blocks in a modular fashion. Additionally, we incorporate into our architecture a new ingredient, the scene organization, for efficiently supporting set-oriented access of large-area region queries. An experimental performance comparison demonstrates that the concept of scene organization leads to considerable performance improvements for large-area region queries by a factor of up to 150

    Adopting national vegetation guidelines and the National Vegetation Information System (NVIS) framework in the Northern Territory

    Get PDF
    Guidelines and core attributes for site-based vegetation surveying and mapping developed for the Northern Territory, are relevant to botanical research, forestry typing, rangeland monitoring and reporting on the extent and condition of native and non-native vegetated landscapes. These initiatives are consistent with national vegetation guidelines and the National Vegetation Information System (NVIS) framework. This paper provides a synopsis of vegetation site data collection, classification and mapping in the Northern Territory, and discusses the benefits of consistency between the guidelines, core attributes and the NVIS framework; both of which has an emphasis on the NVIS hierarchical classification system for describing structural and floristic attributes of vegetation. The long-term aim of the NVIS framework is that national attributes are adopted at regional levels to enable comparability of vegetation information within survey and jurisdictional boundaries in the Northern Territory and across Australia. The guidelines and core attributes are incorporated in current and future vegetation survey and mapping programs in the Northern Territory

    EcoGIS – GIS tools for ecosystem approaches to fisheries management

    Get PDF
    Executive Summary: The EcoGIS project was launched in September 2004 to investigate how Geographic Information Systems (GIS), marine data, and custom analysis tools can better enable fisheries scientists and managers to adopt Ecosystem Approaches to Fisheries Management (EAFM). EcoGIS is a collaborative effort between NOAA’s National Ocean Service (NOS) and National Marine Fisheries Service (NMFS), and four regional Fishery Management Councils. The project has focused on four priority areas: Fishing Catch and Effort Analysis, Area Characterization, Bycatch Analysis, and Habitat Interactions. Of these four functional areas, the project team first focused on developing a working prototype for catch and effort analysis: the Fishery Mapper Tool. This ArcGIS extension creates time-and-area summarized maps of fishing catch and effort from logbook, observer, or fishery-independent survey data sets. Source data may come from Oracle, Microsoft Access, or other file formats. Feedback from beta-testers of the Fishery Mapper was used to debug the prototype, enhance performance, and add features. This report describes the four priority functional areas, the development of the Fishery Mapper tool, and several themes that emerged through the parallel evolution of the EcoGIS project, the concept and implementation of the broader field of Ecosystem Approaches to Management (EAM), data management practices, and other EAM toolsets. In addition, a set of six succinct recommendations are proposed on page 29. One major conclusion from this work is that there is no single “super-tool” to enable Ecosystem Approaches to Management; as such, tools should be developed for specific purposes with attention given to interoperability and automation. Future work should be coordinated with other GIS development projects in order to provide “value added” and minimize duplication of efforts. In addition to custom tools, the development of cross-cutting Regional Ecosystem Spatial Databases will enable access to quality data to support the analyses required by EAM. GIS tools will be useful in developing Integrated Ecosystem Assessments (IEAs) and providing pre- and post-processing capabilities for spatially-explicit ecosystem models. Continued funding will enable the EcoGIS project to develop GIS tools that are immediately applicable to today’s needs. These tools will enable simplified and efficient data query, the ability to visualize data over time, and ways to synthesize multidimensional data from diverse sources. These capabilities will provide new information for analyzing issues from an ecosystem perspective, which will ultimately result in better understanding of fisheries and better support for decision-making. (PDF file contains 45 pages.

    A framework for utility data integration in the UK

    Get PDF
    In this paper we investigate various factors which prevent utility knowledge from being fully exploited and suggest that integration techniques can be applied to improve the quality of utility records. The paper suggests a framework which supports knowledge and data integration. The framework supports utility integration at two levels: the schema and data level. Schema level integration ensures that a single, integrated geospatial data set is available for utility enquiries. Data level integration improves utility data quality by reducing inconsistency, duplication and conflicts. Moreover, the framework is designed to preserve autonomy and distribution of utility data. The ultimate aim of the research is to produce an integrated representation of underground utility infrastructure in order to gain more accurate knowledge of the buried services. It is hoped that this approach will enable us to understand various problems associated with utility data, and to suggest some potential techniques for resolving them

    Query processing of geometric objects with free form boundarie sin spatial databases

    Get PDF
    The increasing demand for the use of database systems as an integrating factor in CAD/CAM applications has necessitated the development of database systems with appropriate modelling and retrieval capabilities. One essential problem is the treatment of geometric data which has led to the development of spatial databases. Unfortunately, most proposals only deal with simple geometric objects like multidimensional points and rectangles. On the other hand, there has been a rapid development in the field of representing geometric objects with free form curves or surfaces, initiated by engineering applications such as mechanical engineering, aviation or astronautics. Therefore, we propose a concept for the realization of spatial retrieval operations on geometric objects with free form boundaries, such as B-spline or Bezier curves, which can easily be integrated in a database management system. The key concept is the encapsulation of geometric operations in a so-called query processor. First, this enables the definition of an interface allowing the integration into the data model and the definition of the query language of a database system for complex objects. Second, the approach allows the use of an arbitrary representation of the geometric objects. After a short description of the query processor, we propose some representations for free form objects determined by B-spline or Bezier curves. The goal of efficient query processing in a database environment is achieved using a combination of decomposition techniques and spatial access methods. Finally, we present some experimental results indicating that the performance of decomposition techniques is clearly superior to traditional query processing strategies for geometric objects with free form boundaries
    • …
    corecore