529 research outputs found

    Sparsity in the Delay-Doppler Domain for Measured 60 GHz Vehicle-to-Infrastructure Communication Channels

    Full text link
    We report results from millimeter wave vehicle-to-infrastructure (V2I) channel measurements conducted on Sept. 25, 2018 in an urban street environment, down-town Vienna, Austria. Measurements of a frequency-division multiplexed multiple-input single-output channel have been acquired with a time-domain channel sounder at 60 GHz with a bandwidth of 100 MHz and a frequency resolution of 5 MHz. Two horn antennas were used on a moving transmitter vehicle: one horn emitted a beam towards the horizon and the second horn emitted an elevated beam at 15-degrees up-tilt. This configuration was chosen to assess the impact of beam elevation on V2I communication channel characteristics: propagation loss and sparsity of the local scattering function in the delay-Doppler domain. The measurement results within urban speed limits show high sparsity in the delay-Doppler domain.Comment: submitted to IEEE International Conference on Communication

    Towards 6G with THz Communications: Understanding the Propagation Channels

    Get PDF
    This article aims at providing insights for a comprehensive understanding of THz propagation channels. Specifically, we discuss essential THz channel characteristics to be well understood for the success of THz communications. The methodology of establishing realistic and 6G-compliant THz channel models based on measurements is then elaborated on, followed by a discussion on existing THz channel measurements in the literature. Finally, future research directions, challenges and measures to enrich the understanding of THz channels are discussed

    Towards 6G with THz Communications: Understanding the Propagation Channels

    Full text link
    This article aims at providing insights for a comprehensive understanding of THz propagation channels. Specifically, we discuss essential THz channel characteristics to be well understood for the success of THz communications. The methodology of establishing realistic and 6G-compliant THz channel models based on measurements is then elaborated on, followed by a discussion on existing THz channel measurements in the literature. Finally, future research directions, challenges and measures to enrich the understanding of THz channels are discussed.Comment: 7 page
    corecore