28 research outputs found

    Fourier Method for Approximating Eigenvalues of Indefinite Stekloff Operator

    Full text link
    We introduce an efficient method for computing the Stekloff eigenvalues associated with the Helmholtz equation. In general, this eigenvalue problem requires solving the Helmholtz equation with Dirichlet and/or Neumann boundary condition repeatedly. We propose solving the related constant coefficient Helmholtz equation with Fast Fourier Transform (FFT) based on carefully designed extensions and restrictions of the equation. The proposed Fourier method, combined with proper eigensolver, results in an efficient and clear approach for computing the Stekloff eigenvalues.Comment: 12 pages, 4 figure

    Domain Decomposition preconditioning for high-frequency Helmholtz problems with absorption

    Get PDF
    In this paper we give new results on domain decomposition preconditioners for GMRES when computing piecewise-linear finite-element approximations of the Helmholtz equation −Δu−(k2+iΔ)u=f-\Delta u - (k^2+ {\rm i} \varepsilon)u = f, with absorption parameter Δ∈R\varepsilon \in \mathbb{R}. Multigrid approximations of this equation with Δ=Ìž0\varepsilon \not= 0 are commonly used as preconditioners for the pure Helmholtz case (Δ=0\varepsilon = 0). However a rigorous theory for such (so-called "shifted Laplace") preconditioners, either for the pure Helmholtz equation, or even the absorptive equation (Δ=Ìž0\varepsilon \not=0), is still missing. We present a new theory for the absorptive equation that provides rates of convergence for (left- or right-) preconditioned GMRES, via estimates of the norm and field of values of the preconditioned matrix. This theory uses a kk- and Δ\varepsilon-explicit coercivity result for the underlying sesquilinear form and shows, for example, that if âˆŁÎ”âˆŁâˆŒk2|\varepsilon|\sim k^2, then classical overlapping additive Schwarz will perform optimally for the absorptive problem, provided the subdomain and coarse mesh diameters are carefully chosen. Extensive numerical experiments are given that support the theoretical results. The theory for the absorptive case gives insight into how its domain decomposition approximations perform as preconditioners for the pure Helmholtz case Δ=0\varepsilon = 0. At the end of the paper we propose a (scalable) multilevel preconditioner for the pure Helmholtz problem that has an empirical computation time complexity of about O(n4/3)\mathcal{O}(n^{4/3}) for solving finite element systems of size n=O(k3)n=\mathcal{O}(k^3), where we have chosen the mesh diameter h∌k−3/2h \sim k^{-3/2} to avoid the pollution effect. Experiments on problems with h∌k−1h\sim k^{-1}, i.e. a fixed number of grid points per wavelength, are also given

    A short note on a fast and high-order hybridizable discontinuous Galerkin solver for the 2D high-frequency Helmholtz equation

    Get PDF
    The method of polarized traces provides the first documented algorithm with truly scalable complexity for the highfrequency Helmholtz equation, i.e., with a runtime sublinear in the number of volume unknowns in a parallel environment. However, previous versions of this method were either restricted to a low order of accuracy, or suffered from computationally unfavorable boundary reduction to ρ(p) interfaces in the p-th order case. In this note we rectify this issue by proposing a high-order method of polarized traces with compact reduction to two, rather than ρ(p), interfaces. This method is based on a primal Hybridizable Discontinuous Galerkin (HDG) discretization in a domain decomposition setting. In addition, HDG is a welcome upgrade for the method of polarized traces, since it can be made to work with flexible meshes that align with discontinuous coefficients, and it allows for adaptive refinement in h and p. High order of accuracy is very important for attenuation of the pollution error, even in settings when the medium is not smooth. We provide some examples to corroborate the convergence and complexity claims. Keywords: finite element; frequency-domain; numerical; acoustic; wave equatio

    Overlapping domains for topology optimization of large-area metasurfaces

    Full text link
    We introduce an overlapping-domain approach to large-area metasurface design, in which each simulated domain consists of a unit cell and overlapping regions from the neighboring cells plus PML absorbers. We show that our approach generates greatly improved metalens quality compared to designs produced using a locally periodic approximation, thanks to ∌10×\sim 10\times better accuracy with similar computational cost. We use the new approach with topology optimization to design large-area (200λ200\lambda) high-NA (0.71) multichrome and broadband achromatic lenses with high focusing efficiency (∌50%\sim 50\%), greatly improving upon previously reported works

    Additive Sweeping Preconditioner for the Helmholtz Equation

    Full text link
    We introduce a new additive sweeping preconditioner for the Helmholtz equation based on the perfect matched layer (PML). This method divides the domain of interest into thin layers and proposes a new transmission condition between the subdomains where the emphasis is on the boundary values of the intermediate waves. This approach can be viewed as an effective approximation of an additive decomposition of the solution operator. When combined with the standard GMRES solver, the iteration number is essentially independent of the frequency. Several numerical examples are tested to show the efficiency of this new approach.Comment: 27 page

    An overlapping splitting double sweep method for the Helmholtz equation

    Get PDF
    We consider the domain decomposition method approach to solve the Helmholtz equation. Double sweep based approaches for overlapping decompositions are presented. In particular, we introduce an overlapping splitting double sweep (OSDS) method valid for any type of interface boundary conditions. Despite the fact that first order interface boundary conditions are used, the OSDS method demonstrates good stability properties with respect to the number of subdomains and the frequency even for heterogeneous media. In this context, convergence is improved when compared to the double sweep methods in Nataf et al. (1997) and Vion et al. (2014, 2016} for all of our test cases: waveguide, open cavity and wedge problems
    corecore