2,927 research outputs found

    A survey on mobility management protocols in Wireless Sensor Networks based on 6LoWPAN technology

    Get PDF
    International audienceMobility has the advantage of enlarging WSN applications. However, proposing a mobility support protocol in Wireless Sensor Networks (WSNs) represents a significant challenge. In this paper, we propose a survey on the mobility management protocols in Wireless Sensor Networks based on 6LoWPAN technology. This technology enables to connect IP sensor devices to other IP networks without any need for gateways. We highlight the advantages and drawbacks with performances issues of each studied solution. Then, in order to select a typical classification of mobility management protocols in WSNs, we provide some classification criteria and approaches on which these protocols are based. Finally, we present a comparative study of the existing protocols in terms of the required performances for this network type

    QoS in Body Area Networks: A survey

    Get PDF
    Body Area Networks (BANs) are becoming increasingly popular and have shown great potential in real-time monitoring of the human body. With the promise of being cost-effective and unobtrusive and facilitating continuous monitoring, BANs have attracted a wide range of monitoring applications, including medical and healthcare, sports, and rehabilitation systems. Most of these applications are real time and life critical and require a strict guarantee of Quality of Service (QoS) in terms of timeliness, reliability, and so on. Recently, there has been a number of proposals describing diverse approaches or frameworks to achieve QoS in BANs (i.e., for different layers or tiers and different protocols). This survey put these individual efforts into perspective and presents a more holistic view of the area. In this regard, this article identifies a set of QoS requirements for BAN applications and shows how these requirements are linked in a three-tier BAN system and presents a comprehensive review of the existing proposals against those requirements. In addition, open research issues, challenges, and future research directions in achieving these QoS in BANs are highlighted.</jats:p

    Overview of Wireless Sensor Network

    Get PDF

    Mobile Sensor Networks Applications and Confidentiality

    Get PDF

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Reliable Bidirectional Data Transfer Approach for the Internet of Secured Medical Things Using ZigBee Wireless Network

    Full text link
    [EN] Nowadays, the Internet of Things (IoT) performs robust services for real-time applications in monitoring communication systems and generating meaningful information. The ZigBee devices offer low latency and manageable costs for wireless communication and support the process of physical data collection. Some biosensing systems comprise IoT-based ZigBee devices to monitor patient healthcare attributes and alert healthcare professionals for needed action. However, most of them still face unstable and frequent data interruption issues due to transmission service intrusions. Moreover, the medical data is publicly available using cloud services, and communicated through the smart devices to specialists for evaluation and disease diagnosis. Therefore, the applicable security analysis is another key factor for any medical system. This work proposed an approach for reliable network supervision with the internet of secured medical things using ZigBee networks for a smart healthcare system (RNM-SC). It aims to improve data systems with manageable congestion through load-balanced devices. Moreover, it also increases security performance in the presence of anomalies and offers data routing using the bidirectional heuristics technique. In addition, it deals with more realistic algorithm to associate only authorized devices and avoid the chances of compromising data. In the end, the communication between cloud and network applications is also protected from hostile actions, and only certified end-users can access the data. The proposed approach was tested and analyzed in Network Simulator (NS-3), and, compared to existing solutions, demonstrated significant and reliable performance improvements in terms of network throughput by 12%, energy consumption by 17%, packet drop ratio by 37%, end-to-end delay by 18%, routing complexity by 37%, and tampered packets by 37%.This research is supported by Artificial Intelligence & Data Analytics Lab (AIDA) CCIS Prince Sultan University, Riyadh, Saudi Arabia. Authors are thankful for the support.Rehman, A.; Haseeb, K.; Fati, SM.; Lloret, J.; Peñalver Herrero, ML. (2021). Reliable Bidirectional Data Transfer Approach for the Internet of Secured Medical Things Using ZigBee Wireless Network. Applied Sciences. 11(21):1-16. https://doi.org/10.3390/app11219947S116112

    Service-oriented wireless sensor networks and an energy-aware mesh routing algorithm

    Full text link
    Service-oriented wireless sensor networks (WSNs) are being paid more and more attention because service computing can hide complexity of WSNs and enables simple and transparent access to individual sensor nodes. Existing WSNs mainly use IEEE 802.15.4 as their communication specification, however, this protocol suite cannot support IP-based routing and service-oriented access because it only specifies a set of physical- and MAC-layer protocols. For inosculating WSNs with IP networks, IEEE proposed a 6LoWPAN (IPv6 over LoW Power wireless Area Networks) as the adaptation layer between IP and MAC layers. However, it is still a challenging task how to discover and manage sensor resources, guarantee the security of WSNs and route messages over resource-restricted sensor nodes. This paper is set to address such three key issues. Firstly, we propose a service-oriented WSN architectural model based on 6LoWPAN and design a lightweight service middleware SOWAM (service-oriented WSN architecture middleware), where each sensor node provides a collection of services and is managed by our SOWAM. Secondly, we develop a security mechanism for the authentication and secure connection among users and sensor nodes. Finally, we propose an energyaware mesh routing protocol (EAMR) for message transmission in a WSN with multiple mobile sinks, aiming at prolonging the lifetime of WSNs as long as possible. In our EAMR, sensor nodes with the residual energy lower than a threshold do not forward messages for other nodes until the threshold is leveled down. As a result, the energy consumption is evened over sensor nodes significantly. The experimental results demonstrate the feasibility of our service-oriented approach and lightweight middleware SOWAM, as well as the effectiveness of our routing algorithm EAMR.<br /

    Quality-of-service in wireless sensor networks: state-of-the-art and future directions

    Get PDF
    Wireless sensor networks (WSNs) are one of today’s most prominent instantiations of the ubiquituous computing paradigm. In order to achieve high levels of integration, WSNs need to be conceived considering requirements beyond the mere system’s functionality. While Quality-of-Service (QoS) is traditionally associated with bit/data rate, network throughput, message delay and bit/packet error rate, we believe that this concept is too strict, in the sense that these properties alone do not reflect the overall quality-ofservice provided to the user/application. Other non-functional properties such as scalability, security or energy sustainability must also be considered in the system design. This paper identifies the most important non-functional properties that affect the overall quality of the service provided to the users, outlining their relevance, state-of-the-art and future research directions

    IoT in smart communities, technologies and applications.

    Get PDF
    Internet of Things is a system that integrates different devices and technologies, removing the necessity of human intervention. This enables the capacity of having smart (or smarter) cities around the world. By hosting different technologies and allowing interactions between them, the internet of things has spearheaded the development of smart city systems for sustainable living, increased comfort and productivity for citizens. The Internet of Things (IoT) for Smart Cities has many different domains and draws upon various underlying systems for its operation, in this work, we provide a holistic coverage of the Internet of Things in Smart Cities by discussing the fundamental components that make up the IoT Smart City landscape, the technologies that enable these domains to exist, the most prevalent practices and techniques which are used in these domains as well as the challenges that deployment of IoT systems for smart cities encounter and which need to be addressed for ubiquitous use of smart city applications. It also presents a coverage of optimization methods and applications from a smart city perspective enabled by the Internet of Things. Towards this end, a mapping is provided for the most encountered applications of computational optimization within IoT smart cities for five popular optimization methods, ant colony optimization, genetic algorithm, particle swarm optimization, artificial bee colony optimization and differential evolution. For each application identified, the algorithms used, objectives considered, the nature of the formulation and constraints taken in to account have been specified and discussed. Lastly, the data setup used by each covered work is also mentioned and directions for future work have been identified. Within the smart health domain of IoT smart cities, human activity recognition has been a key study topic in the development of cyber physical systems and assisted living applications. In particular, inertial sensor based systems have become increasingly popular because they do not restrict users’ movement and are also relatively simple to implement compared to other approaches. Fall detection is one of the most important tasks in human activity recognition. With an increasingly aging world population and an inclination by the elderly to live alone, the need to incorporate dependable fall detection schemes in smart devices such as phones, watches has gained momentum. Therefore, differentiating between falls and activities of daily living (ADLs) has been the focus of researchers in recent years with very good results. However, one aspect within fall detection that has not been investigated much is direction and severity aware fall detection. Since a fall detection system aims to detect falls in people and notify medical personnel, it could be of added value to health professionals tending to a patient suffering from a fall to know the nature of the accident. In this regard, as a case study for smart health, four different experiments have been conducted for the task of fall detection with direction and severity consideration on two publicly available datasets. These four experiments not only tackle the problem on an increasingly complicated level (the first one considers a fall only scenario and the other two a combined activity of daily living and fall scenario) but also present methodologies which outperform the state of the art techniques as discussed. Lastly, future recommendations have also been provided for researchers
    • …
    corecore