85,983 research outputs found

    Attribute oriented induction with star schema

    Full text link
    This paper will propose a novel star schema attribute induction as a new attribute induction paradigm and as improving from current attribute oriented induction. A novel star schema attribute induction will be examined with current attribute oriented induction based on characteristic rule and using non rule based concept hierarchy by implementing both of approaches. In novel star schema attribute induction some improvements have been implemented like elimination threshold number as maximum tuples control for generalization result, there is no ANY as the most general concept, replacement the role concept hierarchy with concept tree, simplification for the generalization strategy steps and elimination attribute oriented induction algorithm. Novel star schema attribute induction is more powerful than the current attribute oriented induction since can produce small number final generalization tuples and there is no ANY in the results.Comment: 23 Pages, IJDM

    From Cutting Planes Algorithms to Compression Schemes and Active Learning

    Get PDF
    Cutting-plane methods are well-studied localization(and optimization) algorithms. We show that they provide a natural framework to perform machinelearning ---and not just to solve optimization problems posed by machinelearning--- in addition to their intended optimization use. In particular, theyallow one to learn sparse classifiers and provide good compression schemes.Moreover, we show that very little effort is required to turn them intoeffective active learning methods. This last property provides a generic way todesign a whole family of active learning algorithms from existing passivemethods. We present numerical simulations testifying of the relevance ofcutting-plane methods for passive and active learning tasks.Comment: IJCNN 2015, Jul 2015, Killarney, Ireland. 2015, \<http://www.ijcnn.org/\&g

    Degree Sequence Index Strategy

    Full text link
    We introduce a procedure, called the Degree Sequence Index Strategy (DSI), by which to bound graph invariants by certain indices in the ordered degree sequence. As an illustration of the DSI strategy, we show how it can be used to give new upper and lower bounds on the kk-independence and the kk-domination numbers. These include, among other things, a double generalization of the annihilation number, a recently introduced upper bound on the independence number. Next, we use the DSI strategy in conjunction with planarity, to generalize some results of Caro and Roddity about independence number in planar graphs. Lastly, for claw-free and K1,rK_{1,r}-free graphs, we use DSI to generalize some results of Faudree, Gould, Jacobson, Lesniak and Lindquester
    • …
    corecore