25,334 research outputs found

    On Joint Source-Channel Coding for Correlated Sources Over Multiple-Access Relay Channels

    Get PDF
    We study the transmission of correlated sources over discrete memoryless (DM) multiple-access-relay channels (MARCs), in which both the relay and the destination have access to side information arbitrarily correlated with the sources. As the optimal transmission scheme is an open problem, in this work we propose a new joint source-channel coding scheme based on a novel combination of the correlation preserving mapping (CPM) technique with Slepian-Wolf (SW) source coding, and obtain the corresponding sufficient conditions. The proposed coding scheme is based on the decode-and-forward strategy, and utilizes CPM for encoding information simultaneously to the relay and the destination, whereas the cooperation information from the relay is encoded via SW source coding. It is shown that there are cases in which the new scheme strictly outperforms the schemes available in the literature. This is the first instance of a source-channel code that uses CPM for encoding information to two different nodes (relay and destination). In addition to sufficient conditions, we present three different sets of single-letter necessary conditions for reliable transmission of correlated sources over DM MARCs. The newly derived conditions are shown to be at least as tight as the previously known necessary conditions.Comment: Accepted to TI

    Computation Over Gaussian Networks With Orthogonal Components

    Get PDF
    Function computation of arbitrarily correlated discrete sources over Gaussian networks with orthogonal components is studied. Two classes of functions are considered: the arithmetic sum function and the type function. The arithmetic sum function in this paper is defined as a set of multiple weighted arithmetic sums, which includes averaging of the sources and estimating each of the sources as special cases. The type or frequency histogram function counts the number of occurrences of each argument, which yields many important statistics such as mean, variance, maximum, minimum, median, and so on. The proposed computation coding first abstracts Gaussian networks into the corresponding modulo sum multiple-access channels via nested lattice codes and linear network coding and then computes the desired function by using linear Slepian-Wolf source coding. For orthogonal Gaussian networks (with no broadcast and multiple-access components), the computation capacity is characterized for a class of networks. For Gaussian networks with multiple-access components (but no broadcast), an approximate computation capacity is characterized for a class of networks.Comment: 30 pages, 12 figures, submitted to IEEE Transactions on Information Theor

    Communicating Correlated Sources Over an Interference Channel

    Full text link
    A new coding technique, based on \textit{fixed block-length} codes, is proposed for the problem of communicating a pair of correlated sources over a 2−2-user interference channel. Its performance is analyzed to derive a new set of sufficient conditions. The latter is proven to be strictly less binding than the current known best, which is due to Liu and Chen [Dec, 2011]. Our findings are inspired by Dueck's example [March, 1981]

    A New Data Processing Inequality and Its Applications in Distributed Source and Channel Coding

    Full text link
    In the distributed coding of correlated sources, the problem of characterizing the joint probability distribution of a pair of random variables satisfying an n-letter Markov chain arises. The exact solution of this problem is intractable. In this paper, we seek a single-letter necessary condition for this n-letter Markov chain. To this end, we propose a new data processing inequality on a new measure of correlation by means of spectrum analysis. Based on this new data processing inequality, we provide a single-letter necessary condition for the required joint probability distribution. We apply our results to two specific examples involving the distributed coding of correlated sources: multi-terminal rate-distortion region and multiple access channel with correlated sources, and propose new necessary conditions for these two problems.Comment: 45 pages, 3 figures, submitted to IEEE Trans. Information Theor

    An Achievable Rate Region for the Broadcast Channel with Feedback

    Full text link
    A single-letter achievable rate region is proposed for the two-receiver discrete memoryless broadcast channel with generalized feedback. The coding strategy involves block-Markov superposition coding, using Marton's coding scheme for the broadcast channel without feedback as the starting point. If the message rates in the Marton scheme are too high to be decoded at the end of a block, each receiver is left with a list of messages compatible with its output. Resolution information is sent in the following block to enable each receiver to resolve its list. The key observation is that the resolution information of the first receiver is correlated with that of the second. This correlated information is efficiently transmitted via joint source-channel coding, using ideas similar to the Han-Costa coding scheme. Using the result, we obtain an achievable rate region for the stochastically degraded AWGN broadcast channel with noisy feedback from only one receiver. It is shown that this region is strictly larger than the no-feedback capacity region.Comment: To appear in IEEE Transactions on Information Theory. Contains example of AWGN Broadcast Channel with noisy feedbac

    Lecture Notes on Network Information Theory

    Full text link
    These lecture notes have been converted to a book titled Network Information Theory published recently by Cambridge University Press. This book provides a significantly expanded exposition of the material in the lecture notes as well as problems and bibliographic notes at the end of each chapter. The authors are currently preparing a set of slides based on the book that will be posted in the second half of 2012. More information about the book can be found at http://www.cambridge.org/9781107008731/. The previous (and obsolete) version of the lecture notes can be found at http://arxiv.org/abs/1001.3404v4/

    Capacity Theorems for Quantum Multiple Access Channels: Classical-Quantum and Quantum-Quantum Capacity Regions

    Full text link
    We consider quantum channels with two senders and one receiver. For an arbitrary such channel, we give multi-letter characterizations of two different two-dimensional capacity regions. The first region is comprised of the rates at which it is possible for one sender to send classical information, while the other sends quantum information. The second region consists of the rates at which each sender can send quantum information. For each region, we give an example of a channel for which the corresponding region has a single-letter description. One of our examples relies on a new result proved here, perhaps of independent interest, stating that the coherent information over any degradable channel is concave in the input density operator. We conclude with connections to other work and a discussion on generalizations where each user simultaneously sends classical and quantum information.Comment: 38 pages, 1 figure. Fixed typos, added new example. Submitted to IEEE Tranactions on Information Theor
    • …
    corecore