130 research outputs found

    Determinising Parity Automata

    Full text link
    Parity word automata and their determinisation play an important role in automata and game theory. We discuss a determinisation procedure for nondeterministic parity automata through deterministic Rabin to deterministic parity automata. We prove that the intermediate determinisation to Rabin automata is optimal. We show that the resulting determinisation to parity automata is optimal up to a small constant. Moreover, the lower bound refers to the more liberal Streett acceptance. We thus show that determinisation to Streett would not lead to better bounds than determinisation to parity. As a side-result, this optimality extends to the determinisation of B\"uchi automata

    On finitely ambiguous B\"uchi automata

    Full text link
    Unambiguous B\"uchi automata, i.e. B\"uchi automata allowing only one accepting run per word, are a useful restriction of B\"uchi automata that is well-suited for probabilistic model-checking. In this paper we propose a more permissive variant, namely finitely ambiguous B\"uchi automata, a generalisation where each word has at most kk accepting runs, for some fixed kk. We adapt existing notions and results concerning finite and bounded ambiguity of finite automata to the setting of ω\omega-languages and present a translation from arbitrary nondeterministic B\"uchi automata with nn states to finitely ambiguous automata with at most 3n3^n states and at most nn accepting runs per word

    Complementation and Inclusion of Weighted Automata on Infinite Trees

    Get PDF
    Weighted automata can be seen as a natural generalization of finite state automata to more complex algebraic structures. The standard reasoning tasks for unweighted automata can also be generalized to the weighted setting. In this report we study the problems of intersection, complementation and inclusion for weighted automata on infinite trees and show that they are not harder than reasoning with unweighted automata. We also present explicit methods for solving these problems optimally

    Emptiness Of Alternating Tree Automata Using Games With Imperfect Information

    Get PDF
    We consider the emptiness problem for alternating tree automata, with two acceptance semantics: classical (all branches are accepted) and qualitative (almost all branches are accepted). For the classical semantics, the usual technique to tackle this problem relies on a Simulation Theorem which constructs an equivalent non-deterministic automaton from the original alternating one, and then checks emptiness by a reduction to a two-player perfect information game. However, for the qualitative semantics, no simulation of alternation by means of non-determinism is known. We give an alternative technique to decide the emptiness problem of alternating tree automata, that does not rely on a Simulation Theorem. Indeed, we directly reduce the emptiness problem to solving an imperfect information two-player parity game. Our new approach can successfully be applied to both semantics, and yields decidability results with optimal complexity; for the qualitative semantics, the key ingredient in the proof is a positionality result for stochastic games played over infinite graphs

    Decision Problems for Nash Equilibria in Stochastic Games

    Get PDF
    We analyse the computational complexity of finding Nash equilibria in stochastic multiplayer games with ω\omega-regular objectives. While the existence of an equilibrium whose payoff falls into a certain interval may be undecidable, we single out several decidable restrictions of the problem. First, restricting the search space to stationary, or pure stationary, equilibria results in problems that are typically contained in PSPACE and NP, respectively. Second, we show that the existence of an equilibrium with a binary payoff (i.e. an equilibrium where each player either wins or loses with probability 1) is decidable. We also establish that the existence of a Nash equilibrium with a certain binary payoff entails the existence of an equilibrium with the same payoff in pure, finite-state strategies.Comment: 22 pages, revised versio

    Parity and generalised Büchi automata - determinisation and complementation

    Get PDF
    In this thesis, we study the problems of determinisation and complementation of finite automata on infinite words. We focus on two classes of automata that occur naturally: generalised Büchi automata and nondeterministic parity automata. Generalised Büchi and parity automata occur naturally in model-checking, realisability checking and synthesis procedures. We first review a tight determinisation procedure for Büchi automata, which uses a simplification of Safra trees called history trees. As Büchi automata are special types of both generalised Büchi and parity automata, we adjust the data structure to arrive at suitably tight determinisation constructions for both generalised Büchi and parity automata. As the parity condition describes combinations of Büchi and CoBüchi conditions, instead of immediately modifying the data structure to handle parity automata, we arrive at a suitable data structure by first looking at a special case, Rabin automata with one accepting pair. One pair Rabin automata correspond to parity automata with three priorities and serve as a starting point to modify the structures that result from Büchi determinisation: we then nest these structures to reflect the standard parity condition and describe a direct determinisation construction. The generalised Büchi condition is characterised by an accepting family with 'k' accepting sets. It is easy to extend classic determinisation constructions to handle generalised Büchi automata by incorporating the degeneralization algorithm in the determinisation construction. We extend the tight Büchi construction to do exactly this. Our determinisation constructions go to deterministic Rabin automata. It is known that one can determinise to the more convenient parity condition by incorporating the standard Latest Appearance Record construction in the determinisation procedure. We determinise to parity automata using this technique. We prove lower bounds on these constructions. In the case of determinisation to Rabin automata, our constructions are tight to the state. In the case of determinisation to parity, there is a constant factor ≤ 1.5 between upper and lower bounds reducing to optimal(to the state) in the case of Büchi and 1-pair Rabin. We also reconnect tight determinisation and complementation and provide constructions for complementing generalised Büchi and parity automata by starting withour data structure for determinisation. We introduce suitable data structures for the complementation procedures based on the data structure used for determinisation. We prove lower bounds for both constructions that are tight upto an O(n) factor where 'n' is the number of states of the nondeterministic automaton that is complemented

    VLDL Satisfiability and Model Checking via Tree Automata

    Get PDF
    We present novel algorithms solving the satisfiability problem and the model checking problem for Visibly Linear Dynamic Logic (VLDL) in asymptotically optimal time via a reduction to the emptiness problem for tree automata with B\"uchi acceptance. Since VLDL allows for the specification of important properties of recursive systems, this reduction enables the efficient analysis of such systems. Furthermore, as the problem of tree automata emptiness is well-studied, this reduction enables leveraging the mature algorithms and tools for that problem in order to solve the satisfiability problem and the model checking problem for VLDL.Comment: 14 page
    • …
    corecore