7 research outputs found

    A Pseudorandom-Function Mode Based on Lesamnta-LW and the MDP Domain Extension and Its Applications

    Get PDF
    This paper discusses a mode for pseudorandom functions (PRFs) based on the hashing mode of Lesamnta-LW and the domain extension called Merkle-Damgård with permutation (MDP). The hashing mode of Lesamnta-LW is a plain Merkle-Damgård iteration of a block cipher with its key size half of its block size. First, a PRF mode is presented which produces multiple independent PRFs with multiple permutations and initialization vectors if the underlying block cipher is a PRP. Then, two applications of the PRF mode are presented. One is a PRF with minimum padding. Here, padding is said to be minimum if the produced message blocks do not include message blocks only with the padded sequence for any non-empty input message. The other is a vector-input PRF using the PRFs with minimum padding.This work was supported in part by JSPS KAKENHI GrantNumber JP16H02828.IEICE Transactions Online TOP (https://search.ieice.org/

    Merkle-Damgård Construction Method and Alternatives: A Review

    Get PDF
    Cryptographic hash function is an important cryptographic tool in the field of information security. Design of most widely used hash functions such as MD5 and SHA-1 is based on the iterations of compression function by Merkle-Damgård construction method with constant initialization vector. Merkle-Damgård construction showed that the security of hash function depends on the security of the compression function. Several attacks on Merkle-Damgård construction based hash functions motivated researchers to propose different cryptographic constructions to enhance the security of hash functions against the differential and generic attacks. Cryptographic community had been looking for replacements for these weak hash functions and they have proposed new hash functions based on different variants of Merkle-Damgård construction. As a result of an open competition NIST announced Keccak as a SHA-3 standard. This paper provides a review of cryptographic hash function, its security requirements and different design methods of compression function

    The suffix-free-prefix-free hash function construction and its indifferentiability security analysis

    Get PDF
    In this paper, we observe that in the seminal work on indifferentiability analysis of iterated hash functions by Coron et al. and in subsequent works, the initial value (IV) of hash functions is fixed. In addition, these indifferentiability results do not depend on the Merkle–Damgård (MD) strengthening in the padding functionality of the hash functions. We propose a generic n -bit-iterated hash function framework based on an n -bit compression function called suffix-free-prefix-free (SFPF) that works for arbitrary IV s and does not possess MD strengthening. We formally prove that SFPF is indifferentiable from a random oracle (RO) when the compression function is viewed as a fixed input-length random oracle (FIL-RO). We show that some hash function constructions proposed in the literature fit in the SFPF framework while others that do not fit in this framework are not indifferentiable from a RO. We also show that the SFPF hash function framework with the provision of MD strengthening generalizes any n -bit-iterated hash function based on an n -bit compression function and with an n -bit chaining value that is proven indifferentiable from a RO

    Revisiting Dedicated and Block Cipher based Hash Functions

    Get PDF
    A hash function maps a variable length input into a fixed length output. The hash functions that are used in the information security related applications are referred as cryptographic hash functions. Hash functions are being used as building blocks of many complex cryptographic mechanisms and protocols. Construction of a hash function consists of two components. First component is a compression function and the second component is a domain extender. The various hash function design philosophies try to design the compression function from different angles. Two major categories of hash functions are: dedicated hash functions, and block cipher-based hash functions. These two kinds of design philosophies have been revisited in this paper. Two dedicated has functions from MD4 family - MD4, and SHA-256 constructions have been detailed in this paper. To limit the scope of this paper in this framework, discussions on attacks on hash functions, and SHA-3 finalists have been excluded here. Keywords

    Sufficient conditions for sound tree and sequential hashing modes

    Get PDF
    Hash functions are usually composed of a mode of operation on top of a concrete primitive with fixed input-length and fixed output-length, such as a block cipher or a permutation. In practice, the mode is often sequential, although parallel (or tree) hashing modes are also possible. The former requires less memory, while the latter has several advantages such as its inherent parallelism and a lower cost of hash value re-computation when only a small part of the input changes. In this paper, we consider the general case of (tree or sequential) hashing modes that make use of an underlying hash function, which may in turn be sequential. We formulate a set of three simple conditions for such a (tree or sequential) hashing mode to be sound. By sound, we mean that the advantage in differentiating a hash function obtained by applying a tree hashing mode to an ideal underlying hash function from an ideal monolithic hash function is upper bounded by q2/2n+1q^2/2^{n+1} with qq the number of queries to the underlying hash function and nn the length of the chaining values. We provide a proof of soundness in the indifferentiability framework. The conditions we formulate are easy to implement and to verify, and can be used by the practitioner to build a tree hashing mode on top of an existing hash function. We show how to apply tree hashing modes to sequential hash functions in an optimal way, demonstrate the applicability of our conditions with two efficient and simple tree hashing modes and provide a simple method to take the union of tree hashing modes that preserves soundness. It turns out that sequential hashing modes using a compression function (i.e., a hash function with fixed input-length) can be considered as particular cases and, as a by-product, our results also apply to them. We discuss the different techniques for satisfying the three conditions, thereby shedding a new light on several published modes

    TEDT2 - Highly Secure Leakage-resilient TBC-based Authenticated Encryption

    Get PDF
    Leakage-resilient authenticated encryption (AE) schemes received considerable attention during the previous decade. Two core security models of bounded and unbounded leakage have evolved, where the latter has been motivated in a very detailed and practice-oriented manner. In that setting, designers often build schemes based on (tweakable) block ciphers due to the small state size, such as the recent two-pass AE scheme TEDT from TCHES 1/2020. TEDT is interesting due to its high security guarantees of O(n - log(n^2))-bit integrity under leakage and similar AE security in the black-box setting. Though, a detail limited it to provide only n/2-bit privacy under leakage. In this work, we extend TEDT to TEDT2 in three aspects with the help of a tweakable block cipher with a 3n-bit tweakey: we (1) adopt the idea from the design team of Romulus of replacing TEDT\u27s previous internal hash function with Naito\u27s MDPH, (2) move the nonce from the hash to the tag-generation function both for more efficiency, and (3) strengthen the security of the encryption to obtain beyond-birthday-bound security also under leakage
    corecore