88,613 research outputs found

    Visualization with hierarchically structured trees for an explanation reasoning system

    Get PDF
    This work is concerned with an application of drawing hierarchically structured trees. The tree drawing is applied to an explanation reasoning system. The reasoning is based on synthetic abduction (hypothesis) that gets a case from a rule and a result. In other words, the system searches a proper environment to get a desired result. In order that the system may be reliably related to the amount of rules which are used to get the answer, we visualize a process of reasoning to show how rules have concern with the process. Since the process of reasoning in the system makes a hierarchically structured tree, the visualization of reasoning is a drawing of a hierarchically structured tree. We propose a method of visualization that is applicable to the explanation reasoning system.</p

    Correspondences between Classical, Intuitionistic and Uniform Provability

    Get PDF
    Based on an analysis of the inference rules used, we provide a characterization of the situations in which classical provability entails intuitionistic provability. We then examine the relationship of these derivability notions to uniform provability, a restriction of intuitionistic provability that embodies a special form of goal-directedness. We determine, first, the circumstances in which the former relations imply the latter. Using this result, we identify the richest versions of the so-called abstract logic programming languages in classical and intuitionistic logic. We then study the reduction of classical and, derivatively, intuitionistic provability to uniform provability via the addition to the assumption set of the negation of the formula to be proved. Our focus here is on understanding the situations in which this reduction is achieved. However, our discussions indicate the structure of a proof procedure based on the reduction, a matter also considered explicitly elsewhere.Comment: 31 page

    The CIFF Proof Procedure for Abductive Logic Programming with Constraints: Theory, Implementation and Experiments

    Get PDF
    We present the CIFF proof procedure for abductive logic programming with constraints, and we prove its correctness. CIFF is an extension of the IFF proof procedure for abductive logic programming, relaxing the original restrictions over variable quantification (allowedness conditions) and incorporating a constraint solver to deal with numerical constraints as in constraint logic programming. Finally, we describe the CIFF system, comparing it with state of the art abductive systems and answer set solvers and showing how to use it to program some applications. (To appear in Theory and Practice of Logic Programming - TPLP)

    Dead code elimination based pointer analysis for multithreaded programs

    Get PDF
    This paper presents a new approach for optimizing multitheaded programs with pointer constructs. The approach has applications in the area of certified code (proof-carrying code) where a justification or a proof for the correctness of each optimization is required. The optimization meant here is that of dead code elimination. Towards optimizing multithreaded programs the paper presents a new operational semantics for parallel constructs like join-fork constructs, parallel loops, and conditionally spawned threads. The paper also presents a novel type system for flow-sensitive pointer analysis of multithreaded programs. This type system is extended to obtain a new type system for live-variables analysis of multithreaded programs. The live-variables type system is extended to build the third novel type system, proposed in this paper, which carries the optimization of dead code elimination. The justification mentioned above takes the form of type derivation in our approach.Comment: 19 page

    Relational semantics of linear logic and higher-order model-checking

    Full text link
    In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of any higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreover, the interaction between the relational interpretations of the HORS and of the ATA identifies the set of accepting states of the tree automaton against the infinite tree generated by the recursion scheme. We show how to extend this result to alternating parity automata (APT) by introducing a parametric version of the exponential modality of linear logic, capturing the formal properties of colors (or priorities) in higher-order model-checking. We show in particular how to reunderstand in this way the type-theoretic approach to higher-order model-checking developed by Kobayashi and Ong. We briefly explain in the end of the paper how his analysis driven by linear logic results in a new and purely semantic proof of decidability of the formulas of the monadic second-order logic for higher-order recursion schemes.Comment: 24 pages. Submitte
    • …
    corecore