114,916 research outputs found

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    Temporal Feature Selection with Symbolic Regression

    Get PDF
    Building and discovering useful features when constructing machine learning models is the central task for the machine learning practitioner. Good features are useful not only in increasing the predictive power of a model but also in illuminating the underlying drivers of a target variable. In this research we propose a novel feature learning technique in which Symbolic regression is endowed with a ``Range Terminal\u27\u27 that allows it to explore functions of the aggregate of variables over time. We test the Range Terminal on a synthetic data set and a real world data in which we predict seasonal greenness using satellite derived temperature and snow data over a portion of the Arctic. On the synthetic data set we find Symbolic regression with the Range Terminal outperforms standard Symbolic regression and Lasso regression. On the Arctic data set we find it outperforms standard Symbolic regression, fails to beat the Lasso regression, but finds useful features describing the interaction between Land Surface Temperature, Snow, and seasonal vegetative growth in the Arctic

    False Identity Detection Using Complex Sentences

    Get PDF
    The use of faked identities is a current issue for both physical and online security. In this paper, we test the differences between subjects who report their true identity and the ones who give fake identity responding to control, simple, and complex questions. Asking complex questions is a new procedure for increasing liars' cognitive load, which is presented in this paper for the first time. The experiment consisted in an identity verification task, during which response time and errors were collected. Twenty participants were instructed to lie about their identity, whereas the other 20 were asked to respond truthfully. Different machine learning (ML) models were trained, reaching an accuracy level around 90-95% in distinguishing liars from truth tellers based on error rate and response time. Then, to evaluate the generalization and replicability of these models, a new sample of 10 participants were tested and classified, obtaining an accuracy between 80 and 90%. In short, results indicate that liars may be efficiently distinguished from truth tellers on the basis of their response times and errors to complex questions, with an adequate generalization accuracy of the classification models

    Neural Networks for Modeling and Control of Particle Accelerators

    Full text link
    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.Comment: 21 p
    • …
    corecore