706 research outputs found

    Morphological Classification of Radio Galaxies using Semi-Supervised Group Equivariant CNNs

    Full text link
    Out of the estimated few trillion galaxies, only around a million have been detected through radio frequencies, and only a tiny fraction, approximately a thousand, have been manually classified. We have addressed this disparity between labeled and unlabeled images of radio galaxies by employing a semi-supervised learning approach to classify them into the known Fanaroff-Riley Type I (FRI) and Type II (FRII) categories. A Group Equivariant Convolutional Neural Network (G-CNN) was used as an encoder of the state-of-the-art self-supervised methods SimCLR (A Simple Framework for Contrastive Learning of Visual Representations) and BYOL (Bootstrap Your Own Latent). The G-CNN preserves the equivariance for the Euclidean Group E(2), enabling it to effectively learn the representation of globally oriented feature maps. After representation learning, we trained a fully-connected classifier and fine-tuned the trained encoder with labeled data. Our findings demonstrate that our semi-supervised approach outperforms existing state-of-the-art methods across several metrics, including cluster quality, convergence rate, accuracy, precision, recall, and the F1-score. Moreover, statistical significance testing via a t-test revealed that our method surpasses the performance of a fully supervised G-CNN. This study emphasizes the importance of semi-supervised learning in radio galaxy classification, where labeled data are still scarce, but the prospects for discovery are immense.Comment: 9 pages, 6 figures, accepted in INNS Deep Learning Innovations and Applications (INNS DLIA 2023) workshop, IJCNN 2023, to be published in Procedia Computer Scienc

    OFAR: A Multimodal Evidence Retrieval Framework for Illegal Live-streaming Identification

    Full text link
    Illegal live-streaming identification, which aims to help live-streaming platforms immediately recognize the illegal behaviors in the live-streaming, such as selling precious and endangered animals, plays a crucial role in purifying the network environment. Traditionally, the live-streaming platform needs to employ some professionals to manually identify the potential illegal live-streaming. Specifically, the professional needs to search for related evidence from a large-scale knowledge database for evaluating whether a given live-streaming clip contains illegal behavior, which is time-consuming and laborious. To address this issue, in this work, we propose a multimodal evidence retrieval system, named OFAR, to facilitate the illegal live-streaming identification. OFAR consists of three modules: Query Encoder, Document Encoder, and MaxSim-based Contrastive Late Intersection. Both query encoder and document encoder are implemented with the advanced OFA encoder, which is pretrained on a large-scale multimodal dataset. In the last module, we introduce contrastive learning on the basis of the MaxiSim-based late intersection, to enhance the model's ability of query-document matching. The proposed framework achieves significant improvement on our industrial dataset TaoLive, demonstrating the advances of our scheme

    Align Yourself: Self-supervised Pre-training for Fine-grained Recognition via Saliency Alignment

    Full text link
    Self-supervised contrastive learning has demonstrated great potential in learning visual representations. Despite their success on various downstream tasks such as image classification and object detection, self-supervised pre-training for fine-grained scenarios is not fully explored. In this paper, we first point out that current contrastive methods are prone to memorizing background/foreground texture and therefore have a limitation in localizing the foreground object. Analysis suggests that learning to extract discriminative texture information and localization are equally crucial for self-supervised pre-training in fine-grained scenarios. Based on our findings, we introduce cross-view saliency alignment (CVSA), a contrastive learning framework that first crops and swaps saliency regions of images as a novel view generation and then guides the model to localize on the foreground object via a cross-view alignment loss. Extensive experiments on four popular fine-grained classification benchmarks show that CVSA significantly improves the learned representation.Comment: The second version of CVSA. 10 pages, 4 figure

    One-shot domain adaptation in video-based assessment of surgical skills

    Full text link
    Deep Learning (DL) has achieved automatic and objective assessment of surgical skills. However, DL models are data-hungry and restricted to their training domain. This prevents them from transitioning to new tasks where data is limited. Hence, domain adaptation is crucial to implement DL in real life. Here, we propose a meta-learning model, A-VBANet, that can deliver domain-agnostic surgical skill classification via one-shot learning. We develop the A-VBANet on five laparoscopic and robotic surgical simulators. Additionally, we test it on operating room (OR) videos of laparoscopic cholecystectomy. Our model successfully adapts with accuracies up to 99.5% in one-shot and 99.9% in few-shot settings for simulated tasks and 89.7% for laparoscopic cholecystectomy. For the first time, we provide a domain-agnostic procedure for video-based assessment of surgical skills. A significant implication of this approach is that it allows the use of data from surgical simulators to assess performance in the operating room.Comment: 12 pages (+9 pages of Supplementary Materials), 4 figures (+2 Supplementary Figures), 2 tables (+5 Supplementary Tables
    • …
    corecore