182 research outputs found

    Nonlinear Generalization of Den Hartog's Equal-Peak Method

    Full text link
    This study addresses the mitigation of a nonlinear resonance of a mechanical system. In view of the narrow bandwidth of the classical linear tuned vibration absorber, a nonlinear absorber, termed the nonlinear tuned vibration absorber (NLTVA), is introduced in this paper. An unconventional aspect of the NLTVA is that the mathematical form of its restoring force is tailored according to the nonlinear restoring force of the primary system. The NLTVA parameters are then determined using a nonlinear generalization of Den Hartog's equal-peak method. The mitigation of the resonant vibrations of a Duffing oscillator is considered to illustrate the proposed developments

    High-Intensity Discharge Lamp and Duffing Oscillator - Similarities and Differences

    Full text link
    The processes inside the arc tube of high-intensity discharge lamps are investigated by finite element simulations. The behavior of the gas mixture inside the arc tube is governed by differential equations describing mass, energy and charge conservation as well as the Helmholtz equation for the acoustic pressure and the Navier-Stokes equation for the flow driven by the buoyancy and the acoustic streaming force. The model is highly nonlinear and requires a recursion procedure to account for the impact of acoustic streaming on the temperature and other fields. The investigations reveal the presence of a hysteresis and the corresponding jump phenomenon, quite similar to a Duffing oscillator. The similarities and, in particular, the differences of the nonlinear behavior of the high-intensity discharge lamp to that of a Duffing oscillator are discussed. For large amplitudes the high-intensity discharge lamp exhibits a stiffening effect in contrast to the Duffing oscillator.Comment: 14 pages, 8 figure

    Nonlinear damping in mechanical resonators based on graphene and carbon nanotubes

    Full text link
    Carbon nanotubes and graphene allow fabricating outstanding nanomechanical resonators. They hold promise for various scientific and technological applications, including sensing of mass, force, and charge, as well as the study of quantum phenomena at the mesoscopic scale. Here, we have discovered that the dynamics of nanotube and graphene resonators is in fact highly exotic. We propose an unprecedented scenario where mechanical dissipation is entirely determined by nonlinear damping. As a striking consequence, the quality factor Q strongly depends on the amplitude of the motion. This scenario is radically different from that of other resonators, whose dissipation is dominated by a linear damping term. We believe that the difference stems from the reduced dimensionality of carbon nanotubes and graphene. Besides, we exploit the nonlinear nature of the damping to improve the figure of merit of nanotube/graphene resonators.Comment: main text with 4 figures, supplementary informatio

    Impulsive perturbations to differential equations: stable/unstable pseudo-manifolds, heteroclinic connections, and flux

    Get PDF
    State-dependent time-impulsive perturbations to a two-dimensional autonomous flow with stable and unstable manifolds are analysed by posing in terms of an integral equation which is valid in both forwards- and backwards-time. The impulses destroy the smooth invariant manifolds, necessitating new definitions for stable and unstable pseudo-manifolds. Their time-evolution is characterised by solving a Volterra integral equation of the second kind with discontinuous inhomogeniety. A criteria for heteroclinic trajectory persistence in this impulsive context is developed, as is a quantification of an instantaneous flux across broken heteroclinic manifolds. Several examples, including a kicked Duffing oscillator and an underwater explosion in the vicinity of an eddy, are used to illustrate the theory

    Vibrational energy transfer in coupled mechanical systems with nonlinear joints

    Get PDF
    Acknowledgement This work was supported by National Natural Science Foundation of China under Grant number 12172185, by Zhejiang Provincial Natural Science Foundation of China under Grant number LY22A020006, and by Ningbo Municipal Natural Science Foundation under Grant number 2022J174.Peer reviewedPostprin
    corecore