5 research outputs found

    Relations between automata and the simple k-path problem

    Full text link
    Let GG be a directed graph on nn vertices. Given an integer k<=nk<=n, the SIMPLE kk-PATH problem asks whether there exists a simple kk-path in GG. In case GG is weighted, the MIN-WT SIMPLE kk-PATH problem asks for a simple kk-path in GG of minimal weight. The fastest currently known deterministic algorithm for MIN-WT SIMPLE kk-PATH by Fomin, Lokshtanov and Saurabh runs in time O(2.851knO(1)logW)O(2.851^k\cdot n^{O(1)}\cdot \log W) for graphs with integer weights in the range [W,W][-W,W]. This is also the best currently known deterministic algorithm for SIMPLE k-PATH- where the running time is the same without the logW\log W factor. We define Lk(n)[n]kL_k(n)\subseteq [n]^k to be the set of words of length kk whose symbols are all distinct. We show that an explicit construction of a non-deterministic automaton (NFA) of size f(k)nO(1)f(k)\cdot n^{O(1)} for Lk(n)L_k(n) implies an algorithm of running time O(f(k)nO(1)logW)O(f(k)\cdot n^{O(1)}\cdot \log W) for MIN-WT SIMPLE kk-PATH when the weights are non-negative or the constructed NFA is acyclic as a directed graph. We show that the algorithm of Kneis et al. and its derandomization by Chen et al. for SIMPLE kk-PATH can be used to construct an acylic NFA for Lk(n)L_k(n) of size O(4k+o(k))O^*(4^{k+o(k)}). We show, on the other hand, that any NFA for Lk(n)L_k(n) must be size at least 2k2^k. We thus propose closing this gap and determining the smallest NFA for Lk(n)L_k(n) as an interesting open problem that might lead to faster algorithms for MIN-WT SIMPLE kk-PATH. We use a relation between SIMPLE kk-PATH and non-deterministic xor automata (NXA) to give another direction for a deterministic algorithm with running time O(2k)O^*(2^k) for SIMPLE kk-PATH

    Finding the Minimum-Weight k-Path

    Full text link
    Given a weighted nn-vertex graph GG with integer edge-weights taken from a range [M,M][-M,M], we show that the minimum-weight simple path visiting kk vertices can be found in time \tilde{O}(2^k \poly(k) M n^\omega) = O^*(2^k M). If the weights are reals in [1,M][1,M], we provide a (1+ε)(1+\varepsilon)-approximation which has a running time of \tilde{O}(2^k \poly(k) n^\omega(\log\log M + 1/\varepsilon)). For the more general problem of kk-tree, in which we wish to find a minimum-weight copy of a kk-node tree TT in a given weighted graph GG, under the same restrictions on edge weights respectively, we give an exact solution of running time \tilde{O}(2^k \poly(k) M n^3) and a (1+ε)(1+\varepsilon)-approximate solution of running time \tilde{O}(2^k \poly(k) n^3(\log\log M + 1/\varepsilon)). All of the above algorithms are randomized with a polynomially-small error probability.Comment: To appear at WADS 201

    Monomial Testing and Applications

    Full text link
    In this paper, we devise two algorithms for the problem of testing qq-monomials of degree kk in any multivariate polynomial represented by a circuit, regardless of the primality of qq. One is an O(2k)O^*(2^k) time randomized algorithm. The other is an O(12.8k)O^*(12.8^k) time deterministic algorithm for the same qq-monomial testing problem but requiring the polynomials to be represented by tree-like circuits. Several applications of qq-monomial testing are also given, including a deterministic O(12.8mk)O^*(12.8^{mk}) upper bound for the mm-set kk-packing problem.Comment: 17 pages, 4 figures, submitted FAW-AAIM 2013. arXiv admin note: substantial text overlap with arXiv:1302.5898; and text overlap with arXiv:1007.2675, arXiv:1007.2678, arXiv:1007.2673 by other author

    On rr-Simple kk-Path

    Full text link
    An rr-simple kk-path is a {path} in the graph of length kk that passes through each vertex at most rr times. The rr-SIMPLE kk-PATH problem, given a graph GG as input, asks whether there exists an rr-simple kk-path in GG. We first show that this problem is NP-Complete. We then show that there is a graph GG that contains an rr-simple kk-path and no simple path of length greater than 4logk/logr4\log k/\log r. So this, in a sense, motivates this problem especially when one's goal is to find a short path that visits many vertices in the graph while bounding the number of visits at each vertex. We then give a randomized algorithm that runs in time poly(n)2O(klogr/r)\mathrm{poly}(n)\cdot 2^{O( k\cdot \log r/r)} that solves the rr-SIMPLE kk-PATH on a graph with nn vertices with one-sided error. We also show that a randomized algorithm with running time poly(n)2(c/2)k/r\mathrm{poly}(n)\cdot 2^{(c/2)k/ r} with c<1c<1 gives a randomized algorithm with running time \poly(n)\cdot 2^{cn} for the Hamiltonian path problem in a directed graph - an outstanding open problem. So in a sense our algorithm is optimal up to an O(logr)O(\log r) factor
    corecore