945 research outputs found

    A Simple Algorithm for Hamiltonicity

    Full text link
    We develop a new algebraic technique that solves the following problem: Given a black box that contains an arithmetic circuit ff over a field of characteristic 22 of degree~dd. Decide whether ff, expressed as an equivalent multivariate polynomial, contains a multilinear monomial of degree dd. This problem was solved by Williams \cite{W} and Bj\"orklund et. al. \cite{BHKK} for a white box (the circuit is given as an input) that contains arithmetic circuit. We show a simple black box algorithm that solves the problem with the same time complexity. This gives a simple randomized algorithm for the simple kk-path problem for directed graphs of the same time complexity\footnote{O(f(k))O^*(f(k)) is O(poly(n)f(k))O(poly(n)\cdot f(k))} O(2k)O^*(2^k) as in \cite{W} and with reusing the same ideas from \cite{BHKK} with the above gives another algorithm (probably not simpler) for undirected graphs of the same time complexity O(1.657k)O^*(1.657^k) as in \cite{B10,BHKK}

    Determinant Sums for Undirected Hamiltonicity

    Full text link
    We present a Monte Carlo algorithm for Hamiltonicity detection in an nn-vertex undirected graph running in O(1.657n)O^*(1.657^{n}) time. To the best of our knowledge, this is the first superpolynomial improvement on the worst case runtime for the problem since the O(2n)O^*(2^n) bound established for TSP almost fifty years ago (Bellman 1962, Held and Karp 1962). It answers in part the first open problem in Woeginger's 2003 survey on exact algorithms for NP-hard problems. For bipartite graphs, we improve the bound to O(1.414n)O^*(1.414^{n}) time. Both the bipartite and the general algorithm can be implemented to use space polynomial in nn. We combine several recently resurrected ideas to get the results. Our main technical contribution is a new reduction inspired by the algebraic sieving method for kk-Path (Koutis ICALP 2008, Williams IPL 2009). We introduce the Labeled Cycle Cover Sum in which we are set to count weighted arc labeled cycle covers over a finite field of characteristic two. We reduce Hamiltonicity to Labeled Cycle Cover Sum and apply the determinant summation technique for Exact Set Covers (Bj\"orklund STACS 2010) to evaluate it.Comment: To appear at IEEE FOCS 201

    Spotting Trees with Few Leaves

    Full text link
    We show two results related to the Hamiltonicity and kk-Path algorithms in undirected graphs by Bj\"orklund [FOCS'10], and Bj\"orklund et al., [arXiv'10]. First, we demonstrate that the technique used can be generalized to finding some kk-vertex tree with ll leaves in an nn-vertex undirected graph in O(1.657k2l/2)O^*(1.657^k2^{l/2}) time. It can be applied as a subroutine to solve the kk-Internal Spanning Tree (kk-IST) problem in O(min(3.455k,1.946n))O^*(\min(3.455^k, 1.946^n)) time using polynomial space, improving upon previous algorithms for this problem. In particular, for the first time we break the natural barrier of O(2n)O^*(2^n). Second, we show that the iterated random bipartition employed by the algorithm can be improved whenever the host graph admits a vertex coloring with few colors; it can be an ordinary proper vertex coloring, a fractional vertex coloring, or a vector coloring. In effect, we show improved bounds for kk-Path and Hamiltonicity in any graph of maximum degree Δ=4,,12\Delta=4,\ldots,12 or with vector chromatic number at most 8

    Threshold phenomena in random graphs

    Get PDF
    In the 1950s, random graphs appeared for the first time in a result of the prolific hungarian mathematician Pál Erd\H{o}s. Since then, interest in random graph theory has only grown up until now. In its first stages, the basis of its theory were set, while they were mainly used in probability and combinatorics theory. However, with the new century and the boom of technologies like the World Wide Web, random graphs are even more important since they are extremely useful to handle problems in fields like network and communication theory. Because of this fact, nowadays random graphs are widely studied by the mathematical community around the world and new promising results have been recently achieved, showing an exciting future for this field. In this bachelor thesis, we focus our study on the threshold phenomena for graph properties within random graphs
    corecore