24,403 research outputs found

    Neural Connectivity with Hidden Gaussian Graphical State-Model

    Full text link
    The noninvasive procedures for neural connectivity are under questioning. Theoretical models sustain that the electromagnetic field registered at external sensors is elicited by currents at neural space. Nevertheless, what we observe at the sensor space is a superposition of projected fields, from the whole gray-matter. This is the reason for a major pitfall of noninvasive Electrophysiology methods: distorted reconstruction of neural activity and its connectivity or leakage. It has been proven that current methods produce incorrect connectomes. Somewhat related to the incorrect connectivity modelling, they disregard either Systems Theory and Bayesian Information Theory. We introduce a new formalism that attains for it, Hidden Gaussian Graphical State-Model (HIGGS). A neural Gaussian Graphical Model (GGM) hidden by the observation equation of Magneto-encephalographic (MEEG) signals. HIGGS is equivalent to a frequency domain Linear State Space Model (LSSM) but with sparse connectivity prior. The mathematical contribution here is the theory for high-dimensional and frequency-domain HIGGS solvers. We demonstrate that HIGGS can attenuate the leakage effect in the most critical case: the distortion EEG signal due to head volume conduction heterogeneities. Its application in EEG is illustrated with retrieved connectivity patterns from human Steady State Visual Evoked Potentials (SSVEP). We provide for the first time confirmatory evidence for noninvasive procedures of neural connectivity: concurrent EEG and Electrocorticography (ECoG) recordings on monkey. Open source packages are freely available online, to reproduce the results presented in this paper and to analyze external MEEG databases

    Statistical Mechanics and Visual Signal Processing

    Full text link
    The nervous system solves a wide variety of problems in signal processing. In many cases the performance of the nervous system is so good that it apporaches fundamental physical limits, such as the limits imposed by diffraction and photon shot noise in vision. In this paper we show how to use the language of statistical field theory to address and solve problems in signal processing, that is problems in which one must estimate some aspect of the environment from the data in an array of sensors. In the field theory formulation the optimal estimator can be written as an expectation value in an ensemble where the input data act as external field. Problems at low signal-to-noise ratio can be solved in perturbation theory, while high signal-to-noise ratios are treated with a saddle-point approximation. These ideas are illustrated in detail by an example of visual motion estimation which is chosen to model a problem solved by the fly's brain. In this problem the optimal estimator has a rich structure, adapting to various parameters of the environment such as the mean-square contrast and the correlation time of contrast fluctuations. This structure is in qualitative accord with existing measurements on motion sensitive neurons in the fly's brain, and we argue that the adaptive properties of the optimal estimator may help resolve conlficts among different interpretations of these data. Finally we propose some crucial direct tests of the adaptive behavior.Comment: 34pp, LaTeX, PUPT-143

    Integrated 2-D Optical Flow Sensor

    Get PDF
    I present a new focal-plane analog VLSI sensor that estimates optical flow in two visual dimensions. The chip significantly improves previous approaches both with respect to the applied model of optical flow estimation as well as the actual hardware implementation. Its distributed computational architecture consists of an array of locally connected motion units that collectively solve for the unique optimal optical flow estimate. The novel gradient-based motion model assumes visual motion to be translational, smooth and biased. The model guarantees that the estimation problem is computationally well-posed regardless of the visual input. Model parameters can be globally adjusted, leading to a rich output behavior. Varying the smoothness strength, for example, can provide a continuous spectrum of motion estimates, ranging from normal to global optical flow. Unlike approaches that rely on the explicit matching of brightness edges in space or time, the applied gradient-based model assures spatiotemporal continuity on visual information. The non-linear coupling of the individual motion units improves the resulting optical flow estimate because it reduces spatial smoothing across large velocity differences. Extended measurements of a 30x30 array prototype sensor under real-world conditions demonstrate the validity of the model and the robustness and functionality of the implementation
    • …
    corecore