2 research outputs found

    Deciding Quantifier-Free Presburger Formulas Using Parameterized Solution Bounds

    Full text link
    Given a formula in quantifier-free Presburger arithmetic, if it has a satisfying solution, there is one whose size, measured in bits, is polynomially bounded in the size of the formula. In this paper, we consider a special class of quantifier-free Presburger formulas in which most linear constraints are difference (separation) constraints, and the non-difference constraints are sparse. This class has been observed to commonly occur in software verification. We derive a new solution bound in terms of parameters characterizing the sparseness of linear constraints and the number of non-difference constraints, in addition to traditional measures of formula size. In particular, we show that the number of bits needed per integer variable is linear in the number of non-difference constraints and logarithmic in the number and size of non-zero coefficients in them, but is otherwise independent of the total number of linear constraints in the formula. The derived bound can be used in a decision procedure based on instantiating integer variables over a finite domain and translating the input quantifier-free Presburger formula to an equi-satisfiable Boolean formula, which is then checked using a Boolean satisfiability solver. In addition to our main theoretical result, we discuss several optimizations for deriving tighter bounds in practice. Empirical evidence indicates that our decision procedure can greatly outperform other decision procedures.Comment: 26 page

    Reachability in Two-Dimensional Vector Addition Systems with States: One Test is for Free

    Full text link
    Vector addition system with states is an ubiquitous model of computation with extensive applications in computer science. The reachability problem for vector addition systems is central since many other problems reduce to that question. The problem is decidable and it was recently proved that the dimension of the vector addition system is an important parameter of the complexity. In fixed dimensions larger than two, the complexity is not known (with huge complexity gaps). In dimension two, the reachability problem was shown to be PSPACE-complete by Blondin et al. in 2015. We consider an extension of this model, called 2-TVASS, where the first counter can be tested for zero. This model naturally extends the classical model of one counter automata (OCA). We show that reachability is still solvable in polynomial space for 2-TVASS. As in the work Blondin et al., our approach relies on the existence of small reachability certificates obtained by concatenating polynomially many cycles.Comment: Full version of the paper with the same title and authors in the proceedings of CONCUR 202
    corecore