4 research outputs found

    Fine-Grained Zero-Shot Learning: Advances, Challenges, and Prospects

    Full text link
    Recent zero-shot learning (ZSL) approaches have integrated fine-grained analysis, i.e., fine-grained ZSL, to mitigate the commonly known seen/unseen domain bias and misaligned visual-semantics mapping problems, and have made profound progress. Notably, this paradigm differs from existing close-set fine-grained methods and, therefore, can pose unique and nontrivial challenges. However, to the best of our knowledge, there remains a lack of systematic summaries of this topic. To enrich the literature of this domain and provide a sound basis for its future development, in this paper, we present a broad review of recent advances for fine-grained analysis in ZSL. Concretely, we first provide a taxonomy of existing methods and techniques with a thorough analysis of each category. Then, we summarize the benchmark, covering publicly available datasets, models, implementations, and some more details as a library. Last, we sketch out some related applications. In addition, we discuss vital challenges and suggest potential future directions.Comment: 9 pages, 1 figure, 4 table

    Generative Multi-Label Zero-Shot Learning

    Full text link
    Multi-label zero-shot learning strives to classify images into multiple unseen categories for which no data is available during training. The test samples can additionally contain seen categories in the generalized variant. Existing approaches rely on learning either shared or label-specific attention from the seen classes. Nevertheless, computing reliable attention maps for unseen classes during inference in a multi-label setting is still a challenge. In contrast, state-of-the-art single-label generative adversarial network (GAN) based approaches learn to directly synthesize the class-specific visual features from the corresponding class attribute embeddings. However, synthesizing multi-label features from GANs is still unexplored in the context of zero-shot setting. In this work, we introduce different fusion approaches at the attribute-level, feature-level and cross-level (across attribute and feature-levels) for synthesizing multi-label features from their corresponding multi-label class embedding. To the best of our knowledge, our work is the first to tackle the problem of multi-label feature synthesis in the (generalized) zero-shot setting. Comprehensive experiments are performed on three zero-shot image classification benchmarks: NUS-WIDE, Open Images and MS COCO. Our cross-level fusion-based generative approach outperforms the state-of-the-art on all three datasets. Furthermore, we show the generalization capabilities of our fusion approach in the zero-shot detection task on MS COCO, achieving favorable performance against existing methods. The source code is available at https://github.com/akshitac8/Generative_MLZSL.Comment: 10 pages, source code is available at https://github.com/akshitac8/Generative_MLZS
    corecore