3,236 research outputs found

    A Shannon Approach to Secure Multi-party Computations

    Full text link
    In secure multi-party computations (SMC), parties wish to compute a function on their private data without revealing more information about their data than what the function reveals. In this paper, we investigate two Shannon-type questions on this problem. We first consider the traditional one-shot model for SMC which does not assume a probabilistic prior on the data. In this model, private communication and randomness are the key enablers to secure computing, and we investigate a notion of randomness cost and capacity. We then move to a probabilistic model for the data, and propose a Shannon model for discrete memoryless SMC. In this model, correlations among data are the key enablers for secure computing, and we investigate a notion of dependency which permits the secure computation of a function. While the models and questions are general, this paper focuses on summation functions, and relies on polar code constructions

    Compositional closure for Bayes Risk in probabilistic noninterference

    Full text link
    We give a sequential model for noninterference security including probability (but not demonic choice), thus supporting reasoning about the likelihood that high-security values might be revealed by observations of low-security activity. Our novel methodological contribution is the definition of a refinement order and its use to compare security measures between specifications and (their supposed) implementations. This contrasts with the more common practice of evaluating the security of individual programs in isolation. The appropriateness of our model and order is supported by our showing that our refinement order is the greatest compositional relation --the compositional closure-- with respect to our semantics and an "elementary" order based on Bayes Risk --- a security measure already in widespread use. We also relate refinement to other measures such as Shannon Entropy. By applying the approach to a non-trivial example, the anonymous-majority Three-Judges protocol, we demonstrate by example that correctness arguments can be simplified by the sort of layered developments --through levels of increasing detail-- that are allowed and encouraged by compositional semantics

    On the Efficiency of Classical and Quantum Secure Function Evaluation

    Full text link
    We provide bounds on the efficiency of secure one-sided output two-party computation of arbitrary finite functions from trusted distributed randomness in the statistical case. From these results we derive bounds on the efficiency of protocols that use different variants of OT as a black-box. When applied to implementations of OT, these bounds generalize most known results to the statistical case. Our results hold in particular for transformations between a finite number of primitives and for any error. In the second part we study the efficiency of quantum protocols implementing OT. While most classical lower bounds for perfectly secure reductions of OT to distributed randomness still hold in the quantum setting, we present a statistically secure protocol that violates these bounds by an arbitrarily large factor. We then prove a weaker lower bound that does hold in the statistical quantum setting and implies that even quantum protocols cannot extend OT. Finally, we present two lower bounds for reductions of OT to commitments and a protocol based on string commitments that is optimal with respect to both of these bounds

    From usability to secure computing and back again

    Full text link
    Secure multi-party computation (MPC) allows multiple parties to jointly compute the output of a function while preserving the privacy of any individual party’s inputs to that function. As MPC protocols transition from research prototypes to realworld applications, the usability of MPC-enabled applications is increasingly critical to their successful deployment and widespread adoption. Our Web-MPC platform, designed with a focus on usability, has been deployed for privacy-preserving data aggregation initiatives with the City of Boston and the Greater Boston Chamber of Commerce. After building and deploying an initial version of the platform, we conducted a heuristic evaluation to identify usability improvements and implemented corresponding application enhancements. However, it is difficult to gauge the effectiveness of these changes within the context of real-world deployments using traditional web analytics tools without compromising the security guarantees of the platform. This work consists of two contributions that address this challenge: (1) the Web-MPC platform has been extended with the capability to collect web analytics using existing MPC protocols, and (2) as a test of this feature and a way to inform future work, this capability has been leveraged to conduct a usability study comparing the two versions ofWeb-MPC. While many efforts have focused on ways to enhance the usability of privacy-preserving technologies, this study serves as a model for using a privacy-preserving data-driven approach to evaluate and enhance the usability of privacy-preserving websites and applications deployed in realworld scenarios. Data collected in this study yields insights into the relationship between usability and security; these can help inform future implementations of MPC solutions.Published versio
    • …
    corecore