1,027 research outputs found

    A Simple and Efficient Algorithm for Nonlinear Model Predictive Control

    Full text link
    We present PANOC, a new algorithm for solving optimal control problems arising in nonlinear model predictive control (NMPC). A usual approach to this type of problems is sequential quadratic programming (SQP), which requires the solution of a quadratic program at every iteration and, consequently, inner iterative procedures. As a result, when the problem is ill-conditioned or the prediction horizon is large, each outer iteration becomes computationally very expensive. We propose a line-search algorithm that combines forward-backward iterations (FB) and Newton-type steps over the recently introduced forward-backward envelope (FBE), a continuous, real-valued, exact merit function for the original problem. The curvature information of Newton-type methods enables asymptotic superlinear rates under mild assumptions at the limit point, and the proposed algorithm is based on very simple operations: access to first-order information of the cost and dynamics and low-cost direct linear algebra. No inner iterative procedure nor Hessian evaluation is required, making our approach computationally simpler than SQP methods. The low-memory requirements and simple implementation make our method particularly suited for embedded NMPC applications

    An Inequality Constrained SL/QP Method for Minimizing the Spectral Abscissa

    Full text link
    We consider a problem in eigenvalue optimization, in particular finding a local minimizer of the spectral abscissa - the value of a parameter that results in the smallest value of the largest real part of the spectrum of a matrix system. This is an important problem for the stabilization of control systems. Many systems require the spectra to lie in the left half plane in order for them to be stable. The optimization problem, however, is difficult to solve because the underlying objective function is nonconvex, nonsmooth, and non-Lipschitz. In addition, local minima tend to correspond to points of non-differentiability and locally non-Lipschitz behavior. We present a sequential linear and quadratic programming algorithm that solves a series of linear or quadratic subproblems formed by linearizing the surfaces corresponding to the largest eigenvalues. We present numerical results comparing the algorithms to the state of the art

    Sequential Convex Programming Methods for Solving Nonlinear Optimization Problems with DC constraints

    Full text link
    This paper investigates the relation between sequential convex programming (SCP) as, e.g., defined in [24] and DC (difference of two convex functions) programming. We first present an SCP algorithm for solving nonlinear optimization problems with DC constraints and prove its convergence. Then we combine the proposed algorithm with a relaxation technique to handle inconsistent linearizations. Numerical tests are performed to investigate the behaviour of the class of algorithms.Comment: 18 pages, 1 figur
    • …
    corecore