33,221 research outputs found

    Minimizing sum of completion times on a single machine with sequence-dependent family setup times

    Get PDF
    This paper presents a branch-and-bound (B&B) algorithm for minimizing the sum of completion times in a singlemachine scheduling setting with sequence-dependent family setup times. The main feature of the B&B algorithm is a new lower bounding scheme that is based on a networkformulation of the problem. With extensive computational tests, we demonstrate that the B&B algorithm can solve problems with up to 60 jobs and 12 families, where setup and processing times are uniformly distributed in various combinations of the [1,50] and [1,100] ranges

    Minimizing weighted total earliness, total tardiness and setup costs

    Get PDF
    The paper considers a (static) portfolio system that satisfies adding-up contraints and the gross substitution theorem. The paper shows the relationship of the two conditions to the weak dominant diagonal property of the matrix of interest rate elasticities. This enables to investigate the impact of simultaneous changes in interest rates on the asset demands.

    Combined make-to-order and make-to-stock in a food production system

    Get PDF
    The research into multi-product production/inventory control systems has mainly assumed one of the two strategies: Make-to-Order (MTO) or Make-to-Stock (MTS). In practice, however, many companies cater to an increasing variety of products with varying logistical demands (e.g. short due dates, specific products) and production characteristics (e.g. capacity usage, setup) to different market segments and so they are moving to more MTO-production. As a consequence they operate under a hybrid MTO-MTS strategy. Important issues arising out of such situations are, for example, which products should be manufactured to stock and which ones on order and, how to allocate capacity among various MTO-MTS products. This paper presents the state-of-the-art literature review of the combined MTO-MTS production situations. A variety of production management issues in the context of food processing companies, where combined MTO-MTS production is quite common, are discussed in details. The authors propose a comprehensive hierarchical planning framework that covers the important production management decisions to serve as a starting point for evaluation and further research on the planning system for MTO-MTS situations.

    List scheduling revisited

    Get PDF
    We consider the problem of scheduling n jobs on m identical parallel machines to minimize a regular cost function. The standard list scheduling algorithm converts a list into a feasible schedule by focusing on the job start times. We prove that list schedules are dominant for this type of problem. Furthermore, we prove that an alternative list scheduling algorithm, focusing on the completion times rather than the start times, yields also dominant list schedules for problems with sequence dependent setup times

    Solving two production scheduling problems with sequence-dependent set-up times

    Get PDF
    In today�s competitive markets, the importance of good scheduling strategies in manufacturing companies lead to the need of developing efficient methods to solve complex scheduling problems. In this paper, we studied two production scheduling problems with sequence-dependent setups times. The setup times are one of the most common complications in scheduling problems, and are usually associated with cleaning operations and changing tools and shapes in machines. The first problem considered is a single-machine scheduling with release dates, sequence-dependent setup times and delivery times. The performance measure is the maximum lateness. The second problem is a job-shop scheduling problem with sequence-dependent setup times where the objective is to minimize the makespan. We present several priority dispatching rules for both problems, followed by a study of their performance. Finally, conclusions and directions of future research are presented.Production-scheduling, set-up times, priority dispatching rules

    Parallel machine scheduling with release dates, due dates and family setup times

    Get PDF
    In manufacturing, there is a fundamental conflict between efficient production and delivery performance. Maximizing machine utilization by batching similar jobs may lead to poor delivery performance. Minimizing customers' dissatisfaction may lead to an inefficient use of the machines. In this paper, we consider the problem of scheduling n independent jobs with release dates, due dates, and family setup times on m parallel machines. The objective is to minimize the maximum lateness of any job. We present a branch-and-bound algorithm to solve this problem. This algorithm exploits the fact that an optimal schedule is contained in a specific subset of all feasible schedules. For lower bounding purposes, we see setup times as setup jobs with release dates, due dates and processing times. We present two lower bounds for the problem with setup jobs, one of which proceeds by allowing preemption

    Capacity Planning and Leadtime management

    Get PDF
    In this paper we discuss a framework for capacity planning and lead time management in manufacturing companies, with an emphasis on the machine shop. First we show how queueing models can be used to find approximations of the mean and the variance of manufacturing shop lead times. These quantities often serve as a basis to set a fixed planned lead time in an MRP-controlled environment. A major drawback of a fixed planned lead time is the ignorance of the correlation between actual work loads and the lead times that can be realized under a limited capacity flexibility. To overcome this problem, we develop a method that determines the earliest possible completion time of any arriving job, without sacrificing the delivery performance of any other job in the shop. This earliest completion time is then taken to be the delivery date and thereby determines a workload-dependent planned lead time. We compare this capacity planning procedure with a fixed planned lead time approach (as in MRP), with a procedure in which lead times are estimated based on the amount of work in the shop, and with a workload-oriented release procedure. Numerical experiments so far show an excellent performance of the capacity planning procedure

    Minimizing value-at-risk in the single-machine total weighted tardiness problem

    Get PDF
    The vast majority of the machine scheduling literature focuses on deterministic problems, in which all data is known with certainty a priori. This may be a reasonable assumption when the variability in the problem parameters is low. However, as variability in the parameters increases incorporating this uncertainty explicitly into a scheduling model is essential to mitigate the resulting adverse effects. In this paper, we consider the celebrated single-machine total weighted tardiness (TWT) problem in the presence of uncertain problem parameters. We impose a probabilistic constraint on the random TWT and introduce a risk-averse stochastic programming model. In particular, the objective of the proposed model is to find a non-preemptive static job processing sequence that minimizes the value-at-risk (VaR) measure on the random TWT at a specified confidence level. Furthermore, we develop a lower bound on the optimal VaR that may also benefit alternate solution approaches in the future. In this study, we implement a tabu-search heuristic to obtain reasonably good feasible solutions and present results to demonstrate the effect of the risk parameter and the value of the proposed model with respect to a corresponding risk-neutral approach
    corecore