5 research outputs found

    Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models

    Full text link
    In unsupervised data generation tasks, besides the generation of a sample based on previous observations, one would often like to give hints to the model in order to bias the generation towards desirable metrics. We propose a method that combines Generative Adversarial Networks (GANs) and reinforcement learning (RL) in order to accomplish exactly that. While RL biases the data generation process towards arbitrary metrics, the GAN component of the reward function ensures that the model still remembers information learned from data. We build upon previous results that incorporated GANs and RL in order to generate sequence data and test this model in several settings for the generation of molecules encoded as text sequences (SMILES) and in the context of music generation, showing for each case that we can effectively bias the generation process towards desired metrics.Comment: 10 pages, 7 figure

    Classification of sparsely labeled spatio-temporal data through semi-supervised adversarial learning

    Full text link
    In recent years, Generative Adversarial Networks (GAN) have emerged as a powerful method for learning the mapping from noisy latent spaces to realistic data samples in high-dimensional space. So far, the development and application of GANs have been predominantly focused on spatial data such as images. In this project, we aim at modeling of spatio-temporal sensor data instead, i.e. dynamic data over time. The main goal is to encode temporal data into a global and low-dimensional latent vector that captures the dynamics of the spatio-temporal signal. To this end, we incorporate auto-regressive RNNs, Wasserstein GAN loss, spectral norm weight constraints and a semi-supervised learning scheme into InfoGAN, a method for retrieval of meaningful latents in adversarial learning. To demonstrate the modeling capability of our method, we encode full-body skeletal human motion from a large dataset representing 60 classes of daily activities, recorded in a multi-Kinect setup. Initial results indicate competitive classification performance of the learned latent representations, compared to direct CNN/RNN inference. In future work, we plan to apply this method on a related problem in the medical domain, i.e. on recovery of meaningful latents in gait analysis of patients with vertigo and balance disorders

    Adversarial Training for Disease Prediction from Electronic Health Records with Missing Data

    Full text link
    Electronic health records (EHRs) have contributed to the computerization of patient records and can thus be used not only for efficient and systematic medical services, but also for research on biomedical data science. However, there are many missing values in EHRs when provided in matrix form, which is an important issue in many biomedical EHR applications. In this paper, we propose a two-stage framework that includes missing data imputation and disease prediction to address the missing data problem in EHRs. We compared the disease prediction performance of generative adversarial networks (GANs) and conventional learning algorithms in combination with missing data prediction methods. As a result, we obtained a level of accuracy of 0.9777, sensitivity of 0.9521, specificity of 0.9925, area under the receiver operating characteristic curve (AUC-ROC) of 0.9889, and F-score of 0.9688 with a stacked autoencoder as the missing data prediction method and an auxiliary classifier GAN (AC-GAN) as the disease prediction method. The comparison results show that a combination of a stacked autoencoder and an AC-GAN significantly outperforms other existing approaches. Our results suggest that the proposed framework is more robust for disease prediction from EHRs with missing data.Comment: 10 pages, 4 figure

    Domain Adaptation Using Adversarial Learning for Autonomous Navigation

    Full text link
    Autonomous navigation has become an increasingly popular machine learning application. Recent advances in deep learning have also resulted in great improvements to autonomous navigation. However, prior outdoor autonomous navigation depends on various expensive sensors or large amounts of real labeled data which is difficult to acquire and sometimes erroneous. The objective of this study is to train an autonomous navigation model that uses a simulator (instead of real labeled data) and an inexpensive monocular camera. In order to exploit the simulator satisfactorily, our proposed method is based on domain adaptation with adversarial learning. Specifically, we propose our model with 1) a dilated residual block in the generator, 2) cycle loss, and 3) style loss to improve the adversarial learning performance for satisfactory domain adaptation. In addition, we perform a theoretical analysis that supports the justification of our proposed method. We present empirical results of navigation in outdoor courses with various intersections using a commercial radio controlled car. We observe that our proposed method allows us to learn a favorable navigation model by generating images with realistic textures. To the best of our knowledge, this is the first work to apply domain adaptation with adversarial learning to autonomous navigation in real outdoor environments. Our proposed method can also be applied to precise image generation or other robotic tasks

    How Generative Adversarial Networks and Their Variants Work: An Overview

    Full text link
    Generative Adversarial Networks (GAN) have received wide attention in the machine learning field for their potential to learn high-dimensional, complex real data distribution. Specifically, they do not rely on any assumptions about the distribution and can generate real-like samples from latent space in a simple manner. This powerful property leads GAN to be applied to various applications such as image synthesis, image attribute editing, image translation, domain adaptation and other academic fields. In this paper, we aim to discuss the details of GAN for those readers who are familiar with, but do not comprehend GAN deeply or who wish to view GAN from various perspectives. In addition, we explain how GAN operates and the fundamental meaning of various objective functions that have been suggested recently. We then focus on how the GAN can be combined with an autoencoder framework. Finally, we enumerate the GAN variants that are applied to various tasks and other fields for those who are interested in exploiting GAN for their research.Comment: 41 pages, 16 figures, Published in ACM Computing Surveys (CSUR
    corecore