70,498 research outputs found

    Personalizing online reviews for better customer decision making

    Get PDF
    Online consumer reviews have become an important source of information for understanding markets and customer preferences. When making purchase decisions, customers increasingly rely on user-generated online reviews; some even consider the information in online reviews more credible and trustworthy than information provided by vendors. Many studies have revealed that online reviews influence demand and sales. Others have shown the possibility of identifying customer interest in product attributes. However, little work has been done to address customer and review diversity in the process of examining reviews. This research intends to answer the research question: how can we solve the problem of customer and review diversity in the context of online reviews to recommend useful reviews based on customer preferences and improve product recommendation? Our approach to the question is through personalization. Similar to other personalization research, we use an attribute-based model to represent products and customer preferences. Unlike existing personalization research that uses a set of pre-defined product attributes, we explore the possibility of a data-driven approach for identifying more comprehensive product attributes from online reviews to model products and customer preferences. Specifically, we introduce a new topic model for product attribute identification and sentiment analysis. By differentiating word co-occurrences at the sentence level from at the document level, the model better identifies interpretable topics. The use of an inference network with shared structure enables the model to predict product attribute ratings accurately. Based on this topic model, we develop attribute-based representations of products, reviews and customer preferences and use them to construct the personalization of online reviews. We examine personalization from the lens of consumer search theory and human information processing theory and test the hypotheses with an experiment. The personalization of online reviews can 1) recommend products matching customer's preferences; 2) improve custom's intention towards recommended products; 3) best distinguish recommended products from products that do not match customer's preferences; and 4) reduce decision effort

    Knowledge Graph semantic enhancement of input data for improving AI

    Full text link
    Intelligent systems designed using machine learning algorithms require a large number of labeled data. Background knowledge provides complementary, real world factual information that can augment the limited labeled data to train a machine learning algorithm. The term Knowledge Graph (KG) is in vogue as for many practical applications, it is convenient and useful to organize this background knowledge in the form of a graph. Recent academic research and implemented industrial intelligent systems have shown promising performance for machine learning algorithms that combine training data with a knowledge graph. In this article, we discuss the use of relevant KGs to enhance input data for two applications that use machine learning -- recommendation and community detection. The KG improves both accuracy and explainability

    Attentive Aspect Modeling for Review-aware Recommendation

    Full text link
    In recent years, many studies extract aspects from user reviews and integrate them with ratings for improving the recommendation performance. The common aspects mentioned in a user's reviews and a product's reviews indicate indirect connections between the user and product. However, these aspect-based methods suffer from two problems. First, the common aspects are usually very sparse, which is caused by the sparsity of user-product interactions and the diversity of individual users' vocabularies. Second, a user's interests on aspects could be different with respect to different products, which are usually assumed to be static in existing methods. In this paper, we propose an Attentive Aspect-based Recommendation Model (AARM) to tackle these challenges. For the first problem, to enrich the aspect connections between user and product, besides common aspects, AARM also models the interactions between synonymous and similar aspects. For the second problem, a neural attention network which simultaneously considers user, product and aspect information is constructed to capture a user's attention towards aspects when examining different products. Extensive quantitative and qualitative experiments show that AARM can effectively alleviate the two aforementioned problems and significantly outperforms several state-of-the-art recommendation methods on top-N recommendation task.Comment: Camera-ready manuscript for TOI

    Is That Twitter Hashtag Worth Reading

    Full text link
    Online social media such as Twitter, Facebook, Wikis and Linkedin have made a great impact on the way we consume information in our day to day life. Now it has become increasingly important that we come across appropriate content from the social media to avoid information explosion. In case of Twitter, popular information can be tracked using hashtags. Studying the characteristics of tweets containing hashtags becomes important for a number of tasks, such as breaking news detection, personalized message recommendation, friends recommendation, and sentiment analysis among others. In this paper, we have analyzed Twitter data based on trending hashtags, which is widely used nowadays. We have used event based hashtags to know users' thoughts on those events and to decide whether the rest of the users might find it interesting or not. We have used topic modeling, which reveals the hidden thematic structure of the documents (tweets in this case) in addition to sentiment analysis in exploring and summarizing the content of the documents. A technique to find the interestingness of event based twitter hashtag and the associated sentiment has been proposed. The proposed technique helps twitter follower to read, relevant and interesting hashtag.Comment: 10 pages, 6 figures, Presented at the Third International Symposium on Women in Computing and Informatics (WCI-2015

    CausaLM: Causal Model Explanation Through Counterfactual Language Models

    Full text link
    Understanding predictions made by deep neural networks is notoriously difficult, but also crucial to their dissemination. As all ML-based methods, they are as good as their training data, and can also capture unwanted biases. While there are tools that can help understand whether such biases exist, they do not distinguish between correlation and causation, and might be ill-suited for text-based models and for reasoning about high level language concepts. A key problem of estimating the causal effect of a concept of interest on a given model is that this estimation requires the generation of counterfactual examples, which is challenging with existing generation technology. To bridge that gap, we propose CausaLM, a framework for producing causal model explanations using counterfactual language representation models. Our approach is based on fine-tuning of deep contextualized embedding models with auxiliary adversarial tasks derived from the causal graph of the problem. Concretely, we show that by carefully choosing auxiliary adversarial pre-training tasks, language representation models such as BERT can effectively learn a counterfactual representation for a given concept of interest, and be used to estimate its true causal effect on model performance. A byproduct of our method is a language representation model that is unaffected by the tested concept, which can be useful in mitigating unwanted bias ingrained in the data.Comment: Our code and data are available at: https://amirfeder.github.io/CausaLM/ Under review for the Computational Linguistics journa
    corecore