2 research outputs found

    Wind energy harvester interface for sensor nodes

    Get PDF
    The research topic is developping a power converting interface for the novel FLEHAP wind energy harvester allowing the produced energy to be used for powering small wireless nodes. The harvester\u2019s electrical characteristics were studied and a strategy was developped to control and mainting a maximum power transfer. The electronic power converter interface was designed, containing an AC/DC Buck-Boost converter and controlled with a low power microcontroller. Different prototypes were developped that evolved by reducing the sources of power loss and rendering the system more efficient. The validation of the system was done through simulations in the COSMIC/DITEN lab using generated signals, and then follow-up experiments were conducted with a controllable wind tunnel in the DIFI department University of Genoa. The experiment results proved the functionality of the control algorithm as well as the efficiency that was ramped up by the hardware solutions that were implemented, and generally met the requirement to provide a power source for low-power sensor nodes

    A sensor node driven by air flow

    No full text
    The growth of the IoT infrastructure requires the development of new devices able to harvest energy from the environment to power Wireless Sensor Network (WSN) nodes. Among the available sources (light, mechanical vibrations, temperature differences...), air flow can represent a good choice in many cases: we consider not only a natural wind, but also air flow in building pipelines or air flow around a moving vehicle (trains, trucks, cars...). Usually, an energy harvester EH device for IoT applications has centimeter-size dimensions: this constraint hinders the use of blade rotors, since the efficiency goes down at this scale. In this contribution, we present an EH device, called FLEHAP (Fluttering Energy Harvester for Autonomous Powering), which is based on an aeroelastic effect named fluttering. Via an electromagnetic coupling, the FLEHAP device can produce several mW in an air flow of 5 m/s. However, to efficiently transform the mechanical energy in electrical energy, a specialized electronics is needed. In particular, since the brake effect associated with the electromagnetic coupling strongly interacts with the fluttering dynamics, for the sake of the overall system efficiency, it is necessary to control the power drain from the coils. In our paper, we will describe our approach, based on an AC-DC switching converter, supervised by a low-power microcontroller circuit. The latter will be also able to collect data from sensors and send them through a dedicated wireless link
    corecore