10,319 research outputs found

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Non Contact Heart Monitoring

    Get PDF
    Electrocardiograms are one of the most widely used methods for evaluating the structure-function relationships of the heart in health and disease. This book is the first of two volumes which reviews recent advancements in electrocardiography. This volume lays the groundwork for understanding the technical aspects of these advancements. The five sections of this volume, Cardiac Anatomy, ECG Technique, ECG Features, Heart Rate Variability and ECG Data Management, provide comprehensive reviews of advancements in the technical and analytical methods for interpreting and evaluating electrocardiograms. This volume is complemented with anatomical diagrams, electrocardiogram recordings, flow diagrams and algorithms which demonstrate the most modern principles of electrocardiography. The chapters which form this volume describe how the technical impediments inherent to instrument-patient interfacing, recording and interpreting variations in electrocardiogram time intervals and morphologies, as well as electrocardiogram data sharing have been effectively overcome. The advent of novel detection, filtering and testing devices are described. Foremost, among these devices are innovative algorithms for automating the evaluation of electrocardiograms. Permanenet links: Full chapter: http://www.intechopen.com/articles/show/title/non-contact-heart-monitoring Book: http://www.intechopen.com/books/show/title/advances-in-electrocardiograms-methods-and-analysi

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Southwest Research Institute assistance to NASA in biomedical areas of the technology

    Get PDF
    Significant applications of aerospace technology were achieved. These applications include: a miniaturized, noninvasive system to telemeter electrocardiographic signals of heart transplant patients during their recuperative period as graded situations are introduced; and economical vital signs monitor for use in nursing homes and rehabilitation hospitals to indicate the onset of respiratory arrest; an implantable telemetry system to indicate the onset of the rejection phenomenon in animals undergoing cardiac transplants; an exceptionally accurate current proportional temperature controller for pollution studies; an automatic, atraumatic blood pressure measurement device; materials for protecting burned areas in contact with joint bender splints; a detector to signal the passage of animals by a given point during ecology studies; and special cushioning for use with below-knee amputees to protect the integrity of the skin at the stump/prosthesis interface

    Implementing and Evaluating a Wireless Body Sensor System for Automated Physiological Data Acquisition at Home

    Full text link
    Advances in embedded devices and wireless sensor networks have resulted in new and inexpensive health care solutions. This paper describes the implementation and the evaluation of a wireless body sensor system that monitors human physiological data at home. Specifically, a waist-mounted triaxial accelerometer unit is used to record human movements. Sampled data are transmitted using an IEEE 802.15.4 wireless transceiver to a data logger unit. The wearable sensor unit is light, small, and consumes low energy, which allows for inexpensive and unobtrusive monitoring during normal daily activities at home. The acceleration measurement tests show that it is possible to classify different human motion through the acceleration reading. The 802.15.4 wireless signal quality is also tested in typical home scenarios. Measurement results show that even with interference from nearby IEEE 802.11 signals and microwave ovens, the data delivery performance is satisfactory and can be improved by selecting an appropriate channel. Moreover, we found that the wireless signal can be attenuated by housing materials, home appliances, and even plants. Therefore, the deployment of wireless body sensor systems at home needs to take all these factors into consideration.Comment: 15 page

    Treat me well : affective and physiological feedback for wheelchair users

    Get PDF
    This work reports a electrocardiograph and skin conductivity hardware architecture, based on E-textile electrodes, attached to a wheelchair for affective and physiological computing. Appropriate conditioning circuits and a microcontroller platform that performs acquisition, primary processing, and communication using Bluetooth were designed and implemented. To increase the accuracy and repeatability of the skin conductivity measuring channel, force measurement sensors were attached to the system certifying measuring contact force on the electrode level. Advanced processing including Rwave peak detector, adaptive filtering and autonomic nervous system analysis based on wavelets transform was designed and implemented on a server. A central design of affective recognition and biofeedback system is described.Fundação para a Ciência e a Tecnologia (FCT

    ANGELAH: A Framework for Assisting Elders At Home

    Get PDF
    The ever growing percentage of elderly people within modern societies poses welfare systems under relevant stress. In fact, partial and progressive loss of motor, sensorial, and/or cognitive skills renders elders unable to live autonomously, eventually leading to their hospitalization. This results in both relevant emotional and economic costs. Ubiquitous computing technologies can offer interesting opportunities for in-house safety and autonomy. However, existing systems partially address in-house safety requirements and typically focus on only elder monitoring and emergency detection. The paper presents ANGELAH, a middleware-level solution integrating both ”elder monitoring and emergency detection” solutions and networking solutions. ANGELAH has two main features: i) it enables efficient integration between a variety of sensors and actuators deployed at home for emergency detection and ii) provides a solid framework for creating and managing rescue teams composed of individuals willing to promptly assist elders in case of emergency situations. A prototype of ANGELAH, designed for a case study for helping elders with vision impairments, is developed and interesting results are obtained from both computer simulations and a real-network testbed
    corecore