1,245 research outputs found

    A Semantic Framework for the Security Analysis of Ethereum smart contracts

    Full text link
    Smart contracts are programs running on cryptocurrency (e.g., Ethereum) blockchains, whose popularity stem from the possibility to perform financial transactions, such as payments and auctions, in a distributed environment without need for any trusted third party. Given their financial nature, bugs or vulnerabilities in these programs may lead to catastrophic consequences, as witnessed by recent attacks. Unfortunately, programming smart contracts is a delicate task that requires strong expertise: Ethereum smart contracts are written in Solidity, a dedicated language resembling JavaScript, and shipped over the blockchain in the EVM bytecode format. In order to rigorously verify the security of smart contracts, it is of paramount importance to formalize their semantics as well as the security properties of interest, in particular at the level of the bytecode being executed. In this paper, we present the first complete small-step semantics of EVM bytecode, which we formalize in the F* proof assistant, obtaining executable code that we successfully validate against the official Ethereum test suite. Furthermore, we formally define for the first time a number of central security properties for smart contracts, such as call integrity, atomicity, and independence from miner controlled parameters. This formalization relies on a combination of hyper- and safety properties. Along this work, we identified various mistakes and imprecisions in existing semantics and verification tools for Ethereum smart contracts, thereby demonstrating once more the importance of rigorous semantic foundations for the design of security verification techniques.Comment: The EAPLS Best Paper Award at ETAP

    Designing Secure Ethereum Smart Contracts: A Finite State Machine Based Approach

    Full text link
    The adoption of blockchain-based distributed computation platforms is growing fast. Some of these platforms, such as Ethereum, provide support for implementing smart contracts, which are envisioned to have novel applications in a broad range of areas, including finance and Internet-of-Things. However, a significant number of smart contracts deployed in practice suffer from security vulnerabilities, which enable malicious users to steal assets from a contract or to cause damage. Vulnerabilities present a serious issue since contracts may handle financial assets of considerable value, and contract bugs are non-fixable by design. To help developers create more secure smart contracts, we introduce FSolidM, a framework rooted in rigorous semantics for designing con- tracts as Finite State Machines (FSM). We present a tool for creating FSM on an easy-to-use graphical interface and for automatically generating Ethereum contracts. Further, we introduce a set of design patterns, which we implement as plugins that developers can easily add to their contracts to enhance security and functionality
    • …
    corecore