10,511 research outputs found

    A Semantic Framework for Priority-based Service Matching in Pervasive Environments

    No full text
    The increasing popularity of personal wireless devices has raised new demands for the efficient discovery of heterogeneous devices and services in pervasive environments. The existing approaches such as Jini [1], UPnP [8], etc., describe services at a syntactic level and the matching mechanisms in these approaches are limited to syntactic comparisons based on attributes or interfaces. In order to overcome the limitations in these approaches, there has been an increased interest in the use of semantic description and matching techniques to support effective service discovery. This paper proposes a semantic matching approach which facilitates the discovery of device-based services in a pervasive environment; the approach provides a ranking facility that orders services according to their suitability and also considers priorities placed on individual requirements in a request during the matching process. The evaluation studies have shown that the matcher results correlate reasonably well with human judgement

    A Pragmatic Approach for the Semantic Description and Matching of Pervasive Resources

    No full text
    The increasing popularity of personal wireless devices has raised new demands for the efficient discovery of heterogeneous devices and services in pervasive environments. With the advancement of the electronic world, the diversity of available services is increasing rapidly. %This raises new demands for the efficient discovery and location of heterogeneous services and resources in dynamically changing environments. Traditional approaches for service discovery describe services at a syntactic level and the matching mechanisms available for these approaches are limited to syntactic comparisons based on attributes or interfaces. In order to overcome these limitations, there has been an increased interest in the use of semantic description and matching techniques to support effective service discovery. In this paper, we present a semantic matching approach to facilitate the discovery of device-based services in pervasive environments. The approach includes a ranking mechanism that orders services according to their suitability and also considers priorities placed on individual requirements in a request during the matching process. The solution has been systematically evaluated for its retrieval effectiveness and the results have shown that the matcher results agree reasonably well with human judgement. Another important practical concern is the efficiency and the scalability of the semantic matching solution. Therefore, we have evaluated the scalability of the proposed solution by investigating the variation in matching time in response to increasing numbers of advertisements and increasing request sizes, and have presented the empirical results

    Semantic Service Substitution in Pervasive Environments

    Get PDF
    A computing infrastructure where everything is a service offers many new system and application possibilities. Among the main challenges, however, is the issue of service substitution for the application execution in such heterogeneous environments. An application would like to continue to execute even when a service disappears, or it would like to benefit from the environment by using better services with better QoS when possible. In this article, we define a generic service model and describe the equivalence relations between services considering the functionalities they propose and their non functional QoS properties. We define semantic equivalence relations between services and equivalence degree between non functional QoS properties. Using these relations we propose semantic substitution mechanisms upon the appearance and disappearance of services that fits the application needs. We developed a prototype as a proof of concept and evaluated its efficiency over a real use case

    NLSC: Unrestricted Natural Language-based Service Composition through Sentence Embeddings

    Full text link
    Current approaches for service composition (assemblies of atomic services) require developers to use: (a) domain-specific semantics to formalize services that restrict the vocabulary for their descriptions, and (b) translation mechanisms for service retrieval to convert unstructured user requests to strongly-typed semantic representations. In our work, we argue that effort to developing service descriptions, request translations, and matching mechanisms could be reduced using unrestricted natural language; allowing both: (1) end-users to intuitively express their needs using natural language, and (2) service developers to develop services without relying on syntactic/semantic description languages. Although there are some natural language-based service composition approaches, they restrict service retrieval to syntactic/semantic matching. With recent developments in Machine learning and Natural Language Processing, we motivate the use of Sentence Embeddings by leveraging richer semantic representations of sentences for service description, matching and retrieval. Experimental results show that service composition development effort may be reduced by more than 44\% while keeping a high precision/recall when matching high-level user requests with low-level service method invocations.Comment: This paper will appear on SCC'19 (IEEE International Conference on Services Computing) on July 1

    VOLARE: Adaptive Web Service Discovery Middleware for Mobile Systems

    Get PDF
    With the recent advent and widespread use of smart mobile devices, the flexibility and versatility offered by Service Oriented Architecture's (SOA) makes it an ideal approach to use in the rapidly changing mobile environment. However, the mobile setting presents a set of new challenges that service discovery methods developed for nonmobile environments cannot address. The requirements a mobile client device will have from a Web service may change due to changes in the context or the resources of the client device. In a similar manner, a mobile device that acts as a Web service provider will have different capabilities depending on its status, which may also change dramatically during runtime. This paper introduces VOLARE, a middleware-based solution that will monitor the resources and context of the device, and adapt service requests accordingly. The same method will be used to adapt the Quality of Service (QoS) levels advertised by service providers, to realistically reflect each provider's capabilities at any given moment. This approach will allow for more resource-efficient and accurate service discovery in mobile systems and will enable more reliable provider functionality in mobile devices

    The OCarePlatform : a context-aware system to support independent living

    Get PDF
    Background: Currently, healthcare services, such as institutional care facilities, are burdened with an increasing number of elderly people and individuals with chronic illnesses and a decreasing number of competent caregivers. Objectives: To relieve the burden on healthcare services, independent living at home could be facilitated, by offering individuals and their (in)formal caregivers support in their daily care and needs. With the rise of pervasive healthcare, new information technology solutions can assist elderly people ("residents") and their caregivers to allow residents to live independently for as long as possible. Methods: To this end, the OCarePlatform system was designed. This semantic, data-driven and cloud based back-end system facilitates independent living by offering information and knowledge-based services to the resident and his/her (in)formal caregivers. Data and context information are gathered to realize context-aware and personalized services and to support residents in meeting their daily needs. This body of data, originating from heterogeneous data and information sources, is sent to personalized services, where is fused, thus creating an overview of the resident's current situation. Results: The architecture of the OCarePlatform is proposed, which is based on a service-oriented approach, together with its different components and their interactions. The implementation details are presented, together with a running example. A scalability and performance study of the OCarePlatform was performed. The results indicate that the OCarePlatform is able to support a realistic working environment and respond to a trigger in less than 5 seconds. The system is highly dependent on the allocated memory. Conclusion: The data-driven character of the OCarePlatform facilitates easy plug-in of new functionality, enabling the design of personalized, context-aware services. The OCarePlatform leads to better support for elderly people and individuals with chronic illnesses, who live independently. (C) 2016 Elsevier Ireland Ltd. All rights reserved

    Cognitively-inspired Agent-based Service Composition for Mobile & Pervasive Computing

    Full text link
    Automatic service composition in mobile and pervasive computing faces many challenges due to the complex and highly dynamic nature of the environment. Common approaches consider service composition as a decision problem whose solution is usually addressed from optimization perspectives which are not feasible in practice due to the intractability of the problem, limited computational resources of smart devices, service host's mobility, and time constraints to tailor composition plans. Thus, our main contribution is the development of a cognitively-inspired agent-based service composition model focused on bounded rationality rather than optimality, which allows the system to compensate for limited resources by selectively filtering out continuous streams of data. Our approach exhibits features such as distributedness, modularity, emergent global functionality, and robustness, which endow it with capabilities to perform decentralized service composition by orchestrating manifold service providers and conflicting goals from multiple users. The evaluation of our approach shows promising results when compared against state-of-the-art service composition models.Comment: This paper will appear on AIMS'19 (International Conference on Artificial Intelligence and Mobile Services) on June 2

    Personalizable Service Discovery in Pervasive Systems

    Get PDF
    Today, telecom providers are facing changing challenges. To stay ahead in the competition and provide market leading offerings, carriers need to enable a global ecosystem of third party independent application developers to deliver converged services. This is the aim of leveraging a open standardsbased service delivery platform. To identify and to cope with those challenges is the main target of the EU funded project IST DAIDALOS II. And a central point to satisfy the changing user needs is the provision of a well working, user friendly and personalized service discovery. This paper describes our work in the project on a middleware in a framework for pervasive service usage. We have designed an architecture for it, that enables full transparency to the user, grants high compatibility and extendability by a modular and pluggable conception and allows for interoperability with most known service discovery protocols. Our Multi-Protocol Service Discovery and the Four Phases Service Filtering concept enabling personalization should allow for the best possible results in service discovery

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201
    corecore