2 research outputs found

    A Self-Adaptive Proposal Model for Temporal Action Detection based on Reinforcement Learning

    Full text link
    Existing action detection algorithms usually generate action proposals through an extensive search over the video at multiple temporal scales, which brings about huge computational overhead and deviates from the human perception procedure. We argue that the process of detecting actions should be naturally one of observation and refinement: observe the current window and refine the span of attended window to cover true action regions. In this paper, we propose an active action proposal model that learns to find actions through continuously adjusting the temporal bounds in a self-adaptive way. The whole process can be deemed as an agent, which is firstly placed at a position in the video at random, adopts a sequence of transformations on the current attended region to discover actions according to a learned policy. We utilize reinforcement learning, especially the Deep Q-learning algorithm to learn the agent's decision policy. In addition, we use temporal pooling operation to extract more effective feature representation for the long temporal window, and design a regression network to adjust the position offsets between predicted results and the ground truth. Experiment results on THUMOS 2014 validate the effectiveness of the proposed approach, which can achieve competitive performance with current action detection algorithms via much fewer proposals.Comment: Deep Reinforcement Learning, Action Temporal Detection, Temporal Location Regressio

    Domain Adversarial Reinforcement Learning for Partial Domain Adaptation

    Full text link
    Partial domain adaptation aims to transfer knowledge from a label-rich source domain to a label-scarce target domain which relaxes the fully shared label space assumption across different domains. In this more general and practical scenario, a major challenge is how to select source instances in the shared classes across different domains for positive transfer. To address this issue, we propose a Domain Adversarial Reinforcement Learning (DARL) framework to automatically select source instances in the shared classes for circumventing negative transfer as well as to simultaneously learn transferable features between domains by reducing the domain shift. Specifically, in this framework, we employ deep Q-learning to learn policies for an agent to make selection decisions by approximating the action-value function. Moreover, domain adversarial learning is introduced to learn domain-invariant features for the selected source instances by the agent and the target instances, and also to determine rewards for the agent based on how relevant the selected source instances are to the target domain. Experiments on several benchmark datasets demonstrate that the superior performance of our DARL method over existing state of the arts for partial domain adaptation
    corecore