145 research outputs found

    Physiology-Aware Rural Ambulance Routing

    Full text link
    In emergency patient transport from rural medical facility to center tertiary hospital, real-time monitoring of the patient in the ambulance by a physician expert at the tertiary center is crucial. While telemetry healthcare services using mobile networks may enable remote real-time monitoring of transported patients, physiologic measures and tracking are at least as important and requires the existence of high-fidelity communication coverage. However, the wireless networks along the roads especially in rural areas can range from 4G to low-speed 2G, some parts with communication breakage. From a patient care perspective, transport during critical illness can make route selection patient state dependent. Prompt decisions with the relative advantage of a longer more secure bandwidth route versus a shorter, more rapid transport route but with less secure bandwidth must be made. The trade-off between route selection and the quality of wireless communication is an important optimization problem which unfortunately has remained unaddressed by prior work. In this paper, we propose a novel physiology-aware route scheduling approach for emergency ambulance transport of rural patients with acute, high risk diseases in need of continuous remote monitoring. We mathematically model the problem into an NP-hard graph theory problem, and approximate a solution based on a trade-off between communication coverage and shortest path. We profile communication along two major routes in a large rural hospital settings in Illinois, and use the traces to manifest the concept. Further, we design our algorithms and run preliminary experiments for scalability analysis. We believe that our scheduling techniques can become a compelling aid that enables an always-connected remote monitoring system in emergency patient transfer scenarios aimed to prevent morbidity and mortality with early diagnosis treatment.Comment: 6 pages, The Fifth IEEE International Conference on Healthcare Informatics (ICHI 2017), Park City, Utah, 201

    "On the Road" - Reflections on the Security of Vehicular Communication Systems

    Get PDF
    Vehicular communication (VC) systems have recently drawn the attention of industry, authorities, and academia. A consensus on the need to secure VC systems and protect the privacy of their users led to concerted efforts to design security architectures. Interestingly, the results different project contributed thus far bear extensive similarities in terms of objectives and mechanisms. As a result, this appears to be an auspicious time for setting the corner-stone of trustworthy VC systems. Nonetheless, there is a considerable distance to cover till their deployment. This paper ponders on the road ahead. First, it presents a distillation of the state of the art, covering the perceived threat model, security requirements, and basic secure VC system components. Then, it dissects predominant assumptions and design choices and considers alternatives. Under the prism of what is necessary to render secure VC systems practical, and given possible non-technical influences, the paper attempts to chart the landscape towards the deployment of secure VC systems

    MLAS: Multiple level authentication scheme for VANETs

    Get PDF
    The vehicular ad hoc network (VANET) is an emerging type of network which enables vehicles on roads to inter-communicate for driving safety. The basic idea is to allow arbitrary vehicles to broadcast ad hoc messages (e.g. traffic accidents) to other vehicles. However, this raises the concern of security and privacy. Messages should be signed and verified before they are trusted while the real identity of vehicles should not be revealed, but traceable by authorized party. Existing solutions either rely too heavily on a tamper-proof hardware device, or do not have an effective message verification scheme. In this paper, we propose a multiple level authentication scheme which still makes use of tamper-proof devices but the strong assumption that a long-term system master secret is preloaded into all tamper-proof devices is removed. Instead the master secret can be updated if needed to increase the security level. On the other hand, messages sent by vehicles are classified into two types - regular messages and urgent messages. Regular messages can be verified by neighboring vehicles by means of Hash-based Message Authentication Code (HMAC) while urgent messages can only be verified with the aid of RSUs nearby by means of a conditional privacy-preserving authentication scheme. Copyright 2011 ACM.postprintThe 6th ACM Symposium on Information, Computer and Communications Security (ASIACCS 2011), Hong Kong, China, 22-24 March 2011. In Proceedings of 6th ACM ASIACCS, 2011, p. 471-47

    A Comparison of Routing Protocols, Applications in VANET

    Get PDF
    VANET (Vehicular Ad-hoc Network) is another innovation which has taken huge consideration in the current years. The consolidated impromptu system, remote LAN (WLAN) and cell innovation to accomplish clever between vehicle correspondences and enhance street movement security and productivity is advanced. VANET is a subclass of Versatile specially appointed systems which gives a recognized way to deal with Insightful Transport Framework (ITS). VANETs are recognized from different sorts of specially appointed systems by their mixture arrange designs, attributes, and application situations.In this paper, we discussed characteristics, advantages, applications of VANETs and survey recent protocols based on routing. Lastly,the paper accomplishes by a horizontal comparison of the numerous routing protocols for VANET

    Service-Oriented Architecture for Providing ITS Services in Vehicular Ad Hoc Networks

    Get PDF
    Vehicular Ad hoc Network (VANET) is the cutting edge technology for smart transportation. VANET becomes an important aspect of the Intelligent Transport System (ITS). Different safety and non-safety applications have been developed for VANET. The inspiration behind VANET is to provide safe, and pleasant journeys to the drivers and passengers. Although the quality of software depends upon its architecture, most of them do not give proper attention to the consideration of Software-Oriented Architecture (SOA) for providing safety and non-safety ITS services in VANET. To address this issue, we proposed an efficient software architecture by highlighting the important operations and services of the system. The performance of the proposed architecture is evaluated by several design metrics and the results are compared with a state-of-the-art solution. The results showed that our proposed architecture has low coupling and high cohesion factors. Furthermore, the results reveal that our architecture is less complex and more reusable. From the results, we conclude that the proposed architecture is suitable for providing safety and non-safety ITS services and will pave the way for the implementation of the futuristic vision of the ITS

    PMLC- Predictions of Mobility and Transmission in a Lane-Based Cluster VANET Validated on Machine Learning

    Get PDF
    VANET refers to a massive network system, to communicate with each vehicle or infrastructure a precision protocol, an advanced view and routing system is required. This means of communication should be appropriate for all kind of vehicles. In this proposed PMLC protocol, which was built on cluster routing in a lane-based road environment. The network requires optimal solutions to form the cluster and choose its leader. All road environment characteristics are chosen, and multilayer estimations are generated to obtain specific deviations and variations, which are calculated based on data transfer and vehicle movement, and exact values are found using the machine learning system. The neural network processes the inputs, selects the required leader, and sends the data to the destination. At the end of this explanation, the execution of this protocol is depicted graphically

    A secured privacy-preserving multi-level blockchain framework for cluster based VANET

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Existing research shows that Cluster-based Medium Access Control (CB-MAC) protocols perform well in controlling and managing Vehicular Ad hoc Network (VANET), but requires ensuring improved security and privacy preserving authentication mechanism. To this end, we propose a multi-level blockchain-based privacy-preserving authentication protocol. The paper thoroughly explains the formation of the authentication centers, vehicles registration, and key generation processes. In the proposed architecture, a global authentication center (GAC) is responsible for storing all vehicle information, while Local Authentication Center (LAC) maintains a blockchain to enable quick handover between internal clusters of vehicle. We also propose a modified control packet format of IEEE 802.11 standards to remove the shortcomings of the traditional MAC protocols. Moreover, cluster formation, membership and cluster-head selection, and merging and leaving processes are implemented while considering the safety and non-safety message transmission to increase the performance. All blockchain communication is performed using high speed 5G internet while encrypted information is transmitted while using the RSA-1024 digital signature algorithm for improved security, integrity, and confidentiality. Our proof-of-concept implements the authentication schema while considering multiple virtual machines. With detailed experiments, we show that the proposed method is more efficient in terms of time and storage when compared to the existing methods. Besides, numerical analysis shows that the proposed transmission protocols outperform traditional MAC and benchmark methods in terms of throughput, delay, and packet dropping rate

    Using Aerial and Vehicular NFV Infrastructures to Agilely Create Vertical Services

    Get PDF
    5G communications have become an enabler for the creation of new and more complex networking scenarios, bringing together different vertical ecosystems. Such behavior has been fostered by the network function virtualization (NFV) concept, where the orchestration and virtualization capabilities allow the possibility of dynamically supplying network resources according to its needs. Nevertheless, the integration and performance of heterogeneous network environments, each one supported by a different provider, and with specific characteristics and requirements, in a single NFV framework is not straightforward. In this work we propose an NFV-based framework capable of supporting the flexible, cost-effective deployment of vertical services, through the integration of two distinguished mobile environments and their networks: small sized unmanned aerial vehicles (SUAVs), supporting a flying ad hoc network (FANET) and vehicles, promoting a vehicular ad hoc network (VANET). In this context, a use case involving the public safety vertical will be used as an illustrative example to showcase the potential of this framework. This work also includes the technical implementation details of the framework proposed, allowing to analyse and discuss the delays on the network services deployment process. The results show that the deployment times can be significantly reduced through a distributed VNF configuration function based on the publish&-subscribe model.This article has been partially supported by the European H2020 5GinFIRE project (grant agreement 732497). The work of the Universidad Carlos III team members was partially supported by the European H2020 LABYRINTH project (grant agreement H2020-MG-2019-TwoStages-861696), and by the TRUE5G project (PID2019-108713RB-C52PID2019-108713RB-C52/AEI/10.13039/501100011033) funded by the Spanish National Research Agency; and the work of the Instituto de Telecomunicações team members, by the Competitiveness and Internationalization Operational Programme (COMPETE 2020) of the Portugal 2020 framework Mobilizer Project 5G with Nr. 024539 (POCI-01-0247-FEDER-024539)
    corecore