7 research outputs found

    Spatially Varying Nanophotonic Neural Networks

    Full text link
    The explosive growth of computation and energy cost of artificial intelligence has spurred strong interests in new computing modalities as potential alternatives to conventional electronic processors. Photonic processors that execute operations using photons instead of electrons, have promised to enable optical neural networks with ultra-low latency and power consumption. However, existing optical neural networks, limited by the underlying network designs, have achieved image recognition accuracy much lower than state-of-the-art electronic neural networks. In this work, we close this gap by introducing a large-kernel spatially-varying convolutional neural network learned via low-dimensional reparameterization techniques. We experimentally instantiate the network with a flat meta-optical system that encompasses an array of nanophotonic structures designed to induce angle-dependent responses. Combined with an extremely lightweight electronic backend with approximately 2K parameters we demonstrate a nanophotonic neural network reaches 73.80\% blind test classification accuracy on CIFAR-10 dataset, and, as such, the first time, an optical neural network outperforms the first modern digital neural network -- AlexNet (72.64\%) with 57M parameters, bringing optical neural network into modern deep learning era

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    DNA Computing: Modelling in Formal Languages and Combinatorics on Words, and Complexity Estimation

    Get PDF
    DNA computing, an essential area of unconventional computing research, encodes problems using DNA molecules and solves them using biological processes. This thesis contributes to the theoretical research in DNA computing by modelling biological processes as computations and by studying formal language and combinatorics on words concepts motivated by DNA processes. It also contributes to the experimental research in DNA computing by a scaling comparison between DNA computing and other models of computation. First, for theoretical DNA computing research, we propose a new word operation inspired by a DNA wet lab protocol called cross-pairing polymerase chain reaction (XPCR). We define and study a word operation called word blending that models and generalizes an unexpected outcome of XPCR. The input words are uwx and ywv that share a non-empty overlap w, and the output is the word uwv. Closure properties of the Chomsky families of languages under this operation and its iterated version, the existence of a solution to equations involving this operation, and its state complexity are studied. To follow the XPCR experimental requirement closely, a new word operation called conjugate word blending is defined, where the subwords x and y are required to be identical. Closure properties of the Chomsky families of languages under this operation and the XPCR experiments that motivate and implement it are presented. Second, we generalize the sequence of Fibonacci words inspired by biological concepts on DNA. The sequence of Fibonacci words is an infinite sequence of words obtained from two initial letters f(1) = a and f(2)= b, by the recursive definition f(n+2) = f(n+1)*f(n), for all positive integers n, where * denotes word concatenation. After we propose a unified terminology for different types of Fibonacci words and corresponding results in the extensive literature on the topic, we define and explore involutive Fibonacci words motivated by ideas stemming from theoretical studies of DNA computing. The relationship between different involutive Fibonacci words and their borderedness and primitivity are studied. Third, we analyze the practicability of DNA computing experiments since DNA computing and other unconventional computing methods that solve computationally challenging problems often have the limitation that the space of potential solutions grows exponentially with their sizes. For such problems, DNA computing algorithms may achieve a linear time complexity with an exponential space complexity as a trade-off. Using the subset sum problem as the benchmark problem, we present a scaling comparison of the DNA computing (DNA-C) approach with the network biocomputing (NB-C) and the electronic computing (E-C) approaches, where the volume, computing time, and energy required, relative to the input size, are compared. Our analysis shows that E-C uses a tiny volume compared to that required by DNA-C and NB-C, at the cost of the E-C computing time being outperformed first by DNA-C and then by NB-C. In addition, NB-C appears to be more energy efficient than DNA-C for some input sets, and E-C is always an order of magnitude less energy efficient than DNA-C
    corecore