5,515 research outputs found

    Scalable bloom-filter based content dissemination in community networks using information centric principles

    Get PDF
    Information-Centric Networking (ICN) is a new communication paradigm that shifts the focus from content location to content objects themselves. Users request the content by its name or some other form of identifier. Then, the network is responsible for locating the requested content and sending it to the users. Despite a large number of works on ICN in recent years, the problem of scalability of ICN systems has not been studied and addressed adequately. This is especially true when considering real-world deployments and the so-called alternative networks such as community networks. In this work, we explore the applicability of ICN principles in the challenging and unpredictable environments of community networks. In particular, we focus on stateless content dissemination based on Bloom filters (BFs). We highlight the scalability limitations of the classical single-stage BF based approach and argue that by enabling multiple BF stages would lead to performance enhancements. That is, a multi-stage BF based content dissemination mechanism could support large network topologies with heterogeneous traffic and diverse channel conditions. In addition to scalability improvements, this approach also is more secure with regard to Denial of Service attacks

    Internames: a name-to-name principle for the future Internet

    Full text link
    We propose Internames, an architectural framework in which names are used to identify all entities involved in communication: contents, users, devices, logical as well as physical points involved in the communication, and services. By not having a static binding between the name of a communication entity and its current location, we allow entities to be mobile, enable them to be reached by any of a number of basic communication primitives, enable communication to span networks with different technologies and allow for disconnected operation. Furthermore, with the ability to communicate between names, the communication path can be dynamically bound to any of a number of end-points, and the end-points themselves could change as needed. A key benefit of our architecture is its ability to accommodate gradual migration from the current IP infrastructure to a future that may be a ubiquitous Information Centric Network. Basic building blocks of Internames are: i) a name-based Application Programming Interface; ii) a separation of identifiers (names) and locators; iii) a powerful Name Resolution Service (NRS) that dynamically maps names to locators, as a function of time/location/context/service; iv) a built-in capacity of evolution, allowing a transparent migration from current networks and the ability to include as particular cases current specific architectures. To achieve this vision, shared by many other researchers, we exploit and expand on Information Centric Networking principles, extending ICN functionality beyond content retrieval, easing send-to-name and push services, and allowing to use names also to route data in the return path. A key role in this architecture is played by the NRS, which allows for the co-existence of multiple network "realms", including current IP and non-IP networks, glued together by a name-to-name overarching communication primitive.Comment: 6 page

    Mobility Study for Named Data Networking in Wireless Access Networks

    Full text link
    Information centric networking (ICN) proposes to redesign the Internet by replacing its host-centric design with information-centric design. Communication among entities is established at the naming level, with the receiver side (referred to as the Consumer) acting as the driving force behind content delivery, by interacting with the network through Interest message transmissions. One of the proposed advantages for ICN is its support for mobility, by de-coupling applications from transport semantics. However, so far, little research has been conducted to understand the interaction between ICN and mobility of consuming and producing applications, in protocols purely based on information-centric principles, particularly in the case of NDN. In this paper, we present our findings on the mobility-based performance of Named Data Networking (NDN) in wireless access networks. Through simulations, we show that the current NDN architecture is not efficient in handling mobility and architectural enhancements needs to be done to fully support mobility of Consumers and Producers.Comment: to appear in IEEE ICC 201

    Mediator-assisted multi-source routing in information-centric networks

    Get PDF
    Among the new communication paradigms recently proposed, information-centric networking (ICN) is able to natively support content awareness at the network layer shifting the focus from hosts (as in traditional IP networks) to information objects. In this paper, we exploit the intrinsic content-awareness ICN features to design a novel multi-source routing mechanism. It involves a new network entity, the ICN mediator, responsible for locating and delivering the requested information objects that are chunked and stored at different locations. Our approach imposes very limited signalling overhead, especially for large chunk size (MBytes). Simulations show significant latency reduction compared to traditional routing approaches
    • …
    corecore