4 research outputs found

    A Survey of Constrained Combinatorial Testing

    Get PDF
    Combinatorial Testing (CT) is a potentially powerful testing technique, whereas its failure revealing ability might be dramatically reduced if it fails to handle constraints in an adequate and efficient manner. To ensure the wider applicability of CT in the presence of constrained problem domains, large and diverse efforts have been invested towards the techniques and applications of constrained combinatorial testing. In this paper, we provide a comprehensive survey of representations, influences, and techniques that pertain to constraints in CT, covering 129 papers published between 1987 and 2018. This survey not only categorises the various constraint handling techniques, but also reviews comparatively less well-studied, yet potentially important, constraint identification and maintenance techniques. Since real-world programs are usually constrained, this survey can be of interest to researchers and practitioners who are looking to use and study constrained combinatorial testing techniques

    Interaction Testing, Fault Location, and Anonymous Attribute-Based Authorization

    Get PDF
    abstract: This dissertation studies three classes of combinatorial arrays with practical applications in testing, measurement, and security. Covering arrays are widely studied in software and hardware testing to indicate the presence of faulty interactions. Locating arrays extend covering arrays to achieve identification of the interactions causing a fault by requiring additional conditions on how interactions are covered in rows. This dissertation introduces a new class, the anonymizing arrays, to guarantee a degree of anonymity by bounding the probability a particular row is identified by the interaction presented. Similarities among these arrays lead to common algorithmic techniques for their construction which this dissertation explores. Differences arising from their application domains lead to the unique features of each class, requiring tailoring the techniques to the specifics of each problem. One contribution of this work is a conditional expectation algorithm to build covering arrays via an intermediate combinatorial object. Conditional expectation efficiently finds intermediate-sized arrays that are particularly useful as ingredients for additional recursive algorithms. A cut-and-paste method creates large arrays from small ingredients. Performing transformations on the copies makes further improvements by reducing redundancy in the composed arrays and leads to fewer rows. This work contains the first algorithm for constructing locating arrays for general values of dd and tt. A randomized computational search algorithmic framework verifies if a candidate array is (dˉ,t)(\bar{d},t)-locating by partitioning the search space and performs random resampling if a candidate fails. Algorithmic parameters determine which columns to resample and when to add additional rows to the candidate array. Additionally, analysis is conducted on the performance of the algorithmic parameters to provide guidance on how to tune parameters to prioritize speed, accuracy, or a combination of both. This work proposes anonymizing arrays as a class related to covering arrays with a higher coverage requirement and constraints. The algorithms for covering and locating arrays are tailored to anonymizing array construction. An additional property, homogeneity, is introduced to meet the needs of attribute-based authorization. Two metrics, local and global homogeneity, are designed to compare anonymizing arrays with the same parameters. Finally, a post-optimization approach reduces the homogeneity of an anonymizing array.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    corecore