2,067 research outputs found

    Saddlepoint approximation for moment generating functions of truncated random variables

    Full text link
    We consider the problem of approximating the moment generating function (MGF) of a truncated random variable in terms of the MGF of the underlying (i.e., untruncated) random variable. The purpose of approximating the MGF is to enable the application of saddlepoint approximations to certain distributions determined by truncated random variables. Two important statistical applications are the following: the approximation of certain multivariate cumulative distribution functions; and the approximation of passage time distributions in ion channel models which incorporate time interval omission. We derive two types of representation for the MGF of a truncated random variable. One of these representations is obtained by exponential tilting. The second type of representation, which has two versions, is referred to as an exponential convolution representation. Each representation motivates a different approximation. It turns out that each of the three approximations is extremely accurate in those cases ``to which it is suited.'' Moreover, there is a simple rule of thumb for deciding which approximation to use in a given case, and if this rule is followed, then our numerical and theoretical results indicate that the resulting approximation will be extremely accurate.Comment: Published at http://dx.doi.org/10.1214/009053604000000689 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Saddlepoint approximations for likelihood ratio like statistics with applications to permutation tests

    Full text link
    We obtain two theorems extending the use of a saddlepoint approximation to multiparameter problems for likelihood ratio-like statistics which allow their use in permutation and rank tests and could be used in bootstrap approximations. In the first, we show that in some cases when no density exists, the integral of the formal saddlepoint density over the set corresponding to large values of the likelihood ratio-like statistic approximates the true probability with relative error of order 1/n1/n. In the second, we give multivariate generalizations of the Lugannani--Rice and Barndorff-Nielsen or r∗r^* formulas for the approximations. These theorems are applied to obtain permutation tests based on the likelihood ratio-like statistics for the kk sample and the multivariate two-sample cases. Numerical examples are given to illustrate the high degree of accuracy, and these statistics are compared to the classical statistics in both cases.Comment: Published in at http://dx.doi.org/10.1214/11-AOS945 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Loss Distribution Generation in Credit Portfolio Modeling

    Get PDF
    In the current paper we analyze several methods for generation of loss distribution for credit portfolios. Loss distributions play an important role in pricing of credit derivatives and in credit portfolio optimization. A loss distribution is a function of the number of entities in the portfolio, their credit ratings, the notional amount and recovery of each entity, default probabilities, loss given defaults, and the correlation/dependence structure between entities incorporated in the portfolio. Direct generation of loss distribution may require Monte Carlo simulation which is time consuming and is not effective when applied for credit portfolio optimization. To overcome computational complexity a number of approaches were undertaken based on assumptions imposed on the input parameters, goals of loss distributions generation, and the accepted level of tolerance and computational errors

    Exact solution of a two-type branching process: Clone size distribution in cell division kinetics

    Full text link
    We study a two-type branching process which provides excellent description of experimental data on cell dynamics in skin tissue (Clayton et al., 2007). The model involves only a single type of progenitor cell, and does not require support from a self-renewed population of stem cells. The progenitor cells divide and may differentiate into post-mitotic cells. We derive an exact solution of this model in terms of generating functions for the total number of cells, and for the number of cells of different types. We also deduce large time asymptotic behaviors drawing on our exact results, and on an independent diffusion approximation.Comment: 16 page

    Haar Wavelets-Based Methods for Credit Risk Portfolio Modeling

    Get PDF
    In this dissertation we have investigated the credit risk measurement of a credit portfolio by means of the wavelets theory. Banks became subject to regulatory capital requirements under Basel Accords and also to the supervisory review process of capital adequacy, this is the economic capital. Concentration risks in credit portfolios arise from an unequal distribution of loans to single borrowers (name concentration) or different industry or regional sectors (sector concentration) and may lead banks to face bankruptcy. The Merton model is the basis of the Basel II approach, it is a Gaussian one-factor model such that default events are driven by a latent common factor that is assumed to follow the Gaussian distribution. Under this model, loss only occurs when an obligor defaults in a fixed time horizon. If we assume certain homogeneity conditions, this one-factor model leads to a simple analytical asymptotic approximation of the loss distribution function and VaR. The VaR value at a high confidence level is the measure chosen in Basel II to calculate regulatory capital. This approximation, usually called Asymptotic Single Risk Factor model (ASRF), works well for a large number of small exposures but can underestimates risks in the presence of exposure concentrations. Then, the ASRF model does not provide an appropriate quantitative framework for the computation of economic capital. Monte Carlo simulation is a standard method for measuring credit portfolio risk in order to deal with concentration risks. However, this method is very time consuming when the size of the portfolio increases, making the computation unworkable in many situations. In summary, credit risk managers are interested in how can concentration risk be quantified in short times and how can the contributions of individual transactions to the total risk be computed. Since the loss variable can take only a finite number of discrete values, the cumulative distribution function (CDF) is discontinuous and then the Haar wavelets are particularly well-suited for this stepped-shape functions. For this reason, we have developed a new method for numerically inverting the Laplace transform of the density function, once we have approximated the CDF by a finite sum of Haar wavelet basis functions. Wavelets are used in mathematical analysis to denote a kind of orthonormal basis with remarkable approximation properties. The difference between the usual sine wave and a wavelet may be described by the localization property, while the sine wave is localized in frequency domain but not in time domain, a wavelet is localized in both, frequency and time domain. Once the CDF has been computed, we are able to calculate the VaR at a high loss level. Furthermore, we have computed also the Expected Shortfall (ES), since VaR is not a coherent risk measure in the sense that it is not sub-additive. We have shown that, in a wide variety of portfolios, these measures are fast and accurately computed with a relative error lower than 1% when compared with Monte Carlo. We have also extended this methodology to the estimation of the risk contributions to the VaR and the ES, by taking partial derivatives with respect to the exposures, obtaining again high accuracy. Some technical improvements have also been implemented in the computation of the Gauss-Hermite integration formula in order to get the coefficients of the approximation, making the method faster while the accuracy remains. Finally, we have extended the wavelet approximation method to the multi-factor setting by means of Monte Carlo and quasi-Monte Carlo methods
    • …
    corecore