3,816 research outputs found

    Performance Evaluation Cross Layer Routing Metric in Protocol Routing OLSR Wi-Fi Wireless Mesh Networks

    Get PDF
    Wireless Mesh network is a wireless communications and allows multiple nodes work together to deliver message to the destination. Mesh topology improve the reliability of the entire network. Investment is needed in wireless mesh networks less than the cellular network. Wireless Mesh Network is a technology solution to increase the coverage, reliability and ease of implementation that have the nature of multi-hop, self-reconfigurable, self-healing and self-organized. WMN performance depends on the routing protocol used. Routing metrics used by routing protocols decides which route to use between pair of nodes. Various routing metrics have been developed to increase throughput, load balancing and choose the path that is reliable in Wireless Mesh Network. Some cross-layer routing metrics have been developed to improve network performance. This study aims to improve the throughput received by the network, by evaluating the performance of the simulation results cross layer routing metrics Expected Forwarded Counter (EFW) using routing protocols OLSR at 802.11 Wi-Fi Wireless Mesh Network. EFW is routing based on cross-layer metrics to overcome the problems caused by the drop packet selfish behavior on a mesh router. Simulations carried out by using Network Simulator 2. An optimal routing metric has a potential to improve performance of a wireless mesh network. For better performance Improvement can be done by designing efficient routing metrics that can support adaptive mesh routers and mesh clients. The simulation results were evaluated with a modified routing metric EFW with protocol routing OLSR in Wi-FI Wireless Mesh Network. Routing metric EFW is an improvement of ETX by adding the estimated probability of dropping relaying node. The propose routing metric is a combination of EFW metric with routing metric ETT that consider packet size and bandwidth of the link to improve overall routing performance. From the simulation result , routing metric EFW modification has better performance fo throughput,PDR, Packet loss, and end to end delay than routing metrix etx or routing metric EFW, when the number of nodes used is smaller and using high data rate scenario

    Identifying Design Requirements for Wireless Routing Link Metrics

    Full text link
    In this paper, we identify and analyze the requirements to design a new routing link metric for wireless multihop networks. Considering these requirements, when a link metric is proposed, then both the design and implementation of the link metric with a routing protocol become easy. Secondly, the underlying network issues can easily be tackled. Thirdly, an appreciable performance of the network is guaranteed. Along with the existing implementation of three link metrics Expected Transmission Count (ETX), Minimum Delay (MD), and Minimum Loss (ML), we implement inverse ETX; invETX with Optimized Link State Routing (OLSR) using NS-2.34. The simulation results show that how the computational burden of a metric degrades the performance of the respective protocol and how a metric has to trade-off between different performance parameters

    Reliable data delivery in low energy ad hoc sensor networks

    Get PDF
    Reliable delivery of data is a classical design goal for reliability-oriented collection routing protocols for ad hoc wireless sensor networks (WSNs). Guaranteed packet delivery performance can be ensured by careful selection of error free links, quick recovery from packet losses, and avoidance of overloaded relay sensor nodes. Due to limited resources of individual senor nodes, there is usually a trade-off between energy spending for packets transmissions and the appropriate level of reliability. Since link failures and packet losses are unavoidable, sensor networks may tolerate a certain level of reliability without significantly affecting packets delivery performance and data aggregation accuracy in favor of efficient energy consumption. However a certain degree of reliability is needed, especially when hop count increases between source sensor nodes and the base station as a single lost packet may result in loss of a large amount of aggregated data along longer hops. An effective solution is to jointly make a trade-off between energy, reliability, cost, and agility while improving packet delivery, maintaining low packet error ratio, minimizing unnecessary packets transmissions, and adaptively reducing control traffic in favor of high success reception ratios of representative data packets. Based on this approach, the proposed routing protocol can achieve moderate energy consumption and high packet delivery ratio even with high link failure rates. The proposed routing protocol was experimentally investigated on a testbed of Crossbow's TelosB motes and proven to be more robust and energy efficient than the current implementation of TinyOS2.x MultihopLQI
    • …
    corecore