49,540 research outputs found

    Discovering Evolutionary Stepping Stones through Behavior Domination

    Full text link
    Behavior domination is proposed as a tool for understanding and harnessing the power of evolutionary systems to discover and exploit useful stepping stones. Novelty search has shown promise in overcoming deception by collecting diverse stepping stones, and several algorithms have been proposed that combine novelty with a more traditional fitness measure to refocus search and help novelty search scale to more complex domains. However, combinations of novelty and fitness do not necessarily preserve the stepping stone discovery that novelty search affords. In several existing methods, competition between solutions can lead to an unintended loss of diversity. Behavior domination defines a class of algorithms that avoid this problem, while inheriting theoretical guarantees from multiobjective optimization. Several existing algorithms are shown to be in this class, and a new algorithm is introduced based on fast non-dominated sorting. Experimental results show that this algorithm outperforms existing approaches in domains that contain useful stepping stones, and its advantage is sustained with scale. The conclusion is that behavior domination can help illuminate the complex dynamics of behavior-driven search, and can thus lead to the design of more scalable and robust algorithms.Comment: To Appear in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2017

    From constructive field theory to fractional stochastic calculus. (II) Constructive proof of convergence for the L\'evy area of fractional Brownian motion with Hurst index α∈(1/8,1/4)\alpha\in(1/8,1/4)

    Full text link
    {Let B=(B1(t),...,Bd(t))B=(B_1(t),...,B_d(t)) be a dd-dimensional fractional Brownian motion with Hurst index α<1/4\alpha<1/4, or more generally a Gaussian process whose paths have the same local regularity. Defining properly iterated integrals of BB is a difficult task because of the low H\"older regularity index of its paths. Yet rough path theory shows it is the key to the construction of a stochastic calculus with respect to BB, or to solving differential equations driven by BB. We intend to show in a series of papers how to desingularize iterated integrals by a weak, singular non-Gaussian perturbation of the Gaussian measure defined by a limit in law procedure. Convergence is proved by using "standard" tools of constructive field theory, in particular cluster expansions and renormalization. These powerful tools allow optimal estimates, and call for an extension of Gaussian tools such as for instance the Malliavin calculus. After a first introductory paper \cite{MagUnt1}, this one concentrates on the details of the constructive proof of convergence for second-order iterated integrals, also known as L\'evy area

    Energy composition of the Universe: time-independent internal symmetry

    Full text link
    The energy composition of the Universe, as emerged from the Type Ia supernova observations and the WMAP data, looks preposterously complex, -- but only at the first glance. In fact, its structure proves to be simple and regular. An analysis in terms of the Friedmann integral enables to recognize a remarkably simple time-independent covariant robust recipe of the cosmic mix: the numerical values of the Friedmann integral for vacuum, dark matter, baryons and radiation are approximately identical. The identity may be treated as a symmetry relation that unifies cosmic energies into a regular set, a quartet, with the Friedmann integral as its common genuine time-independent physical parameter. Such cosmic internal (non-geometrical) symmetry exists whenever cosmic energies themselves exist in nature. It is most natural for a finite Universe suggested by the WMAP data. A link to fundamental theory may be found under the assumption about a special significance of the electroweak energy scale in both particle physics and cosmology. A freeze-out model developed on this basis demonstrates that the physical nature of new symmetry might be due to the interplay between electroweak physics and gravity at the cosmic age of a few picoseconds. The big `hierarchy number' of particle physics represents the interplay in the model. This number quantifies the Friedmann integral and gives also a measure to some other basic cosmological figures and phenomena associated with new symmetry. In this way, cosmic internal symmetry provides a common ground for better understanding of old and recent problems that otherwise seem unrelated; the coincidence of the observed cosmic densities, the flatness of the co-moving space, the initial perturbations and their amplitude, the cosmic entropy are among them.Comment: 32 page

    Observational Consequences of a Landscape

    Full text link
    In this paper we consider the implications of the "landscape" paradigm for the large scale properties of the universe. The most direct implication of a rich landscape is that our local universe was born in a tunnelling event from a neighboring vacuum. This would imply that we live in an open FRW universe with negative spatial curvature. We argue that the "overshoot" problem, which in other settings would make it difficult to achieve slow roll inflation, actually favors such a cosmology. We consider anthropic bounds on the value of the curvature and on the parameters of inflation. When supplemented by statistical arguments these bounds suggest that the number of inflationary efolds is not very much larger than the observed lower bound. Although not statistically favored, the likelihood that the number of efolds is close to the bound set by observations is not negligible. The possible signatures of such a low number of efolds are briefly described.Comment: 21 pages, 4 figures v2: references adde

    Black Hole Genesis of Dark Matter

    Full text link
    We present a purely gravitational infra-red-calculable production mechanism for dark matter (DM). The source of both the DM relic abundance and the hot Standard Model (SM) plasma is a primordial density of micro black holes (BHs), which evaporate via Hawking emission into both the dark and SM sectors. The mechanism has four qualitatively different regimes depending upon whether the BH evaporation is `fast' or `slow' relative to the initial Hubble rate, and whether the mass of the DM particle is `light' or `heavy' compared to the initial BH temperature. For each of these regimes we calculate the DM yield, YY, as a function of the initial state and DM mass and spin. In the `slow' regime YY depends on only the initial BH mass over a wide range of initial conditions, including scenarios where the BHs are a small fraction of the initial energy density. The DM is produced with a highly non-thermal energy spectrum, leading in the `light' DM mass regime (∼260 eV\sim260\,\mathrm{eV} and above depending on DM spin) to a strong constraint from free-streaming, but also possible observational signatures in structure formation in the spin 3/2 and 2 cases. The `heavy' regime (∼1.2×108 GeV\sim1.2\times 10^8\,\mathrm{GeV} to MPlM_{\mathrm{Pl}} depending on spin) is free of these constraints and provides new possibilities for DM detection. In all cases there is a dark radiation component predicted.Comment: 16 pages, 8 figures. Fixed typos and added reference
    • …
    corecore