764 research outputs found

    A survey of digital image watermarking techniques

    Get PDF
    Watermarking, which belong to the information hiding field, has seen a lot of research interest recently. There is a lot of work begin conducted in different branches in this field. Steganography is used for secret conmunication, whereas watermarking is used for content protection, copyright management, content authentication and tamper detection. In this paper we present a detailed survey of existing and newly proposed steganographic and watenmarking techniques. We classify the techniques based on different domains in which data is embedded. Here we limit the survey to images only

    Research on digital image watermark encryption based on hyperchaos

    Get PDF
    The digital watermarking technique embeds meaningful information into one or more watermark images hidden in one image, in which it is known as a secret carrier. It is difficult for a hacker to extract or remove any hidden watermark from an image, and especially to crack so called digital watermark. The combination of digital watermarking technique and traditional image encryption technique is able to greatly improve anti-hacking capability, which suggests it is a good method for keeping the integrity of the original image. The research works contained in this thesis include: (1)A literature review the hyperchaotic watermarking technique is relatively more advantageous, and becomes the main subject in this programme. (2)The theoretical foundation of watermarking technologies, including the human visual system (HVS), the colour space transform, discrete wavelet transform (DWT), the main watermark embedding algorithms, and the mainstream methods for improving watermark robustness and for evaluating watermark embedding performance. (3) The devised hyperchaotic scrambling technique it has been applied to colour image watermark that helps to improve the image encryption and anti-cracking capabilities. The experiments in this research prove the robustness and some other advantages of the invented technique. This thesis focuses on combining the chaotic scrambling and wavelet watermark embedding to achieve a hyperchaotic digital watermark to encrypt digital products, with the human visual system (HVS) and other factors taken into account. This research is of significant importance and has industrial application value

    Aligned and Non-Aligned Double JPEG Detection Using Convolutional Neural Networks

    Full text link
    Due to the wide diffusion of JPEG coding standard, the image forensic community has devoted significant attention to the development of double JPEG (DJPEG) compression detectors through the years. The ability of detecting whether an image has been compressed twice provides paramount information toward image authenticity assessment. Given the trend recently gained by convolutional neural networks (CNN) in many computer vision tasks, in this paper we propose to use CNNs for aligned and non-aligned double JPEG compression detection. In particular, we explore the capability of CNNs to capture DJPEG artifacts directly from images. Results show that the proposed CNN-based detectors achieve good performance even with small size images (i.e., 64x64), outperforming state-of-the-art solutions, especially in the non-aligned case. Besides, good results are also achieved in the commonly-recognized challenging case in which the first quality factor is larger than the second one.Comment: Submitted to Journal of Visual Communication and Image Representation (first submission: March 20, 2017; second submission: August 2, 2017

    Statistical Tools for Digital Image Forensics

    Get PDF
    A digitally altered image, often leaving no visual clues of having been tampered with, can be indistinguishable from an authentic image. The tampering, however, may disturb some underlying statistical properties of the image. Under this assumption, we propose five techniques that quantify and detect statistical perturbations found in different forms of tampered images: (1) re-sampled images (e.g., scaled or rotated); (2) manipulated color filter array interpolated images; (3) double JPEG compressed images; (4) images with duplicated regions; and (5) images with inconsistent noise patterns. These techniques work in the absence of any embedded watermarks or signatures. For each technique we develop the theoretical foundation, show its effectiveness on credible forgeries, and analyze its sensitivity and robustness to simple counter-attacks

    Cognitive computation of compressed sensing for watermark signal measurement

    Get PDF
    As an important tool for protecting multimedia contents, scrambling and randomizing of original messages is used in generating digital watermark for satisfying security requirements. Based on the neural perception of high-dimensional data, compressed sensing (CS) is proposed as a new technique in watermarking for improved security and reduced computational complexity. In our proposed methodology, watermark signal is extracted from the CS of the Hadamard measurement matrix. Through construction of the scrambled block Hadamard matrix utilizing a cryptographic key, encrypting the watermark signal in CS domain is achieved without any additional computation required. The extensive experiments have shown that the neural inspired CS mechanism can generate watermark signal of higher security, yet it still maintains a better trade-off between transparency and robustness
    • …
    corecore