120,716 research outputs found

    Feedback Controlled Software Systems

    Get PDF
    Software systems generally suffer from a certain fragility in the face of disturbances such as bugs, unforeseen user input, unmodeled interactions with other software components, and so on. A single such disturbance can make the machine on which the software is executing hang or crash. We postulate that what is required to address this fragility is a general means of using feedback to stabilize these systems. In this paper we develop a preliminary dynamical systems model of an arbitrary iterative software process along with the conceptual framework for stabilizing it in the presence of disturbances. To keep the computational requirements of the controllers low, randomization and approximation are used. We describe our initial attempts to apply the model to a faulty list sorter, using feedback to improve its performance. Methods by which software robustness can be enhanced by distributing a task between nodes each of which are capable of selecting the best input to process are also examined, and the particular case of a sorting system consisting of a network of partial sorters, some of which may be buggy or even malicious, is examined

    Neural Task Programming: Learning to Generalize Across Hierarchical Tasks

    Full text link
    In this work, we propose a novel robot learning framework called Neural Task Programming (NTP), which bridges the idea of few-shot learning from demonstration and neural program induction. NTP takes as input a task specification (e.g., video demonstration of a task) and recursively decomposes it into finer sub-task specifications. These specifications are fed to a hierarchical neural program, where bottom-level programs are callable subroutines that interact with the environment. We validate our method in three robot manipulation tasks. NTP achieves strong generalization across sequential tasks that exhibit hierarchal and compositional structures. The experimental results show that NTP learns to generalize well to- wards unseen tasks with increasing lengths, variable topologies, and changing objectives.Comment: ICRA 201

    Autonomous virulence adaptation improves coevolutionary optimization

    Get PDF
    corecore