157,718 research outputs found

    PAEDID: Patch Autoencoder Based Deep Image Decomposition For Pixel-level Defective Region Segmentation

    Full text link
    Unsupervised pixel-level defective region segmentation is an important task in image-based anomaly detection for various industrial applications. The state-of-the-art methods have their own advantages and limitations: matrix-decomposition-based methods are robust to noise but lack complex background image modeling capability; representation-based methods are good at defective region localization but lack accuracy in defective region shape contour extraction; reconstruction-based methods detected defective region match well with the ground truth defective region shape contour but are noisy. To combine the best of both worlds, we present an unsupervised patch autoencoder based deep image decomposition (PAEDID) method for defective region segmentation. In the training stage, we learn the common background as a deep image prior by a patch autoencoder (PAE) network. In the inference stage, we formulate anomaly detection as an image decomposition problem with the deep image prior and domain-specific regularizations. By adopting the proposed approach, the defective regions in the image can be accurately extracted in an unsupervised fashion. We demonstrate the effectiveness of the PAEDID method in simulation studies and an industrial dataset in the case study

    Gradient-Based Dovetail Joint Shape Optimization for Stiffness

    Full text link
    It is common to manufacture an object by decomposing it into parts that can be assembled. This decomposition is often required by size limits of the machine, the complex structure of the shape, etc. To make it possible to easily assemble the final object, it is often desirable to design geometry that enables robust connections between the subcomponents. In this project, we study the task of dovetail-joint shape optimization for stiffness using gradient-based optimization. This optimization requires a differentiable simulator that is capable of modeling the contact between the two parts of a joint, making it possible to reason about the gradient of the stiffness with respect to shape parameters. Our simulation approach uses a penalty method that alternates between optimizing each side of the joint, using the adjoint method to compute gradients. We test our method by optimizing the joint shapes in three different joint shape spaces, and evaluate optimized joint shapes in both simulation and real-world tests. The experiments show that optimized joint shapes achieve higher stiffness, both synthetically and in real-world tests.Comment: ACM SCF 2023: Proceedings of the 8th Annual ACM Symposium on Computational Fabricatio

    Ensemble Joint Sparse Low Rank Matrix Decomposition for Thermography Diagnosis System

    Get PDF
    Composite is widely used in the aircraft industry and it is essential for manufacturers to monitor its health and quality. The most commonly found defects of composite are debonds and delamination. Different inner defects with complex irregular shape is difficult to be diagnosed by using conventional thermal imaging methods. In this paper, an ensemble joint sparse low rank matrix decomposition (EJSLRMD) algorithm is proposed by applying the optical pulse thermography (OPT) diagnosis system. The proposed algorithm jointly models the low rank and sparse pattern by using concatenated feature space. In particular, the weak defects information can be separated from strong noise and the resolution contrast of the defects has significantly been improved. Ensemble iterative sparse modelling are conducted to further enhance the weak information as well as reducing the computational cost. In order to show the robustness and efficacy of the model, experiments are conducted to detect the inner debond on multiple carbon fiber reinforced polymer (CFRP) composites. A comparative analysis is presented with general OPT algorithms. Not withstand above, the proposed model has been evaluated on synthetic data and compared with other low rank and sparse matrix decomposition algorithms
    • …
    corecore