727 research outputs found

    Blockchain-based distributive auction for relay-assisted secure communications

    Get PDF
    Physical layer security (PLS) is considered as a promising technique to prevent information eavesdropping in wireless systems. In this context, cooperative relaying has emerged as a robust solution for achieving PLS due to multipath diversity and relatively lower transmission power. However, relays or the relay operators in the practical environment are unwilling for service provisioning unless they are incentivized for their cost of services. Thus, it is required to jointly consider network economics and relay cooperation to improve system efficiency. In this paper, we consider the problem of joint network economics and PLS using cooperative relaying and jamming. Based on the double auction theory, we model the interaction between transmitters seeking for a particular level of secure transmission of information and relay operators for suitable relay and jammer assignment, in a multiple source-destination networks. In addition, theoretical analyses are presented to justify that the proposed auction mechanism satisfies the desirable economic properties of individual rationality, budget balance, and truthfulness. As the participants in the traditional centralized auction framework may take selfish actions or collude with each other, we propose a decentralized and trustless auction framework based on blockchain technology. In particular, we exploit the smart contract feature of blockchain to construct a completely autonomous framework, where all the participants are financially enforced by smart contract terms. The security properties of the proposed framework are also discussed

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Dynamic Spectrum Allocation and Sharing in Cognitive Cooperative Networks

    Get PDF
    The dramatic increase of service quality and channel capacity in wireless networks is severely limited by the scarcity of energy and bandwidth, which are the two fundamental resources for communications. New communications and networking paradigms such as cooperative communication and cognitive radio networks emerged in recent years that can intelligently and efficiently utilize these scarce resources. With the development of these new techniques, how to design efficient spectrum allocation and sharing schemes becomes very important, due to the challenges brought by the new techniques. In this dissertation we have investigated several critical issues in spectrum allocation and sharing and address these challenges. Due to limited network resources in a multiuser radio environment, a particular user may try to exploit the resources for self-enrichment, which in turn may prompt other users to behave the same way. In addition, cognitive users are able to make intelligent decisions on spectrum usage and communication parameters based on the sensed spectrum dynamics and other users' decisions. Thus, it is important to analyze the intelligent behavior and complicated interactions of cognitive users via game-theoretic approaches. Moreover, the radio environment is highly dynamic, subject to shadowing/fading, user mobility in space/frequency domains, traffic variations, and etc. Such dynamics brings a lot of overhead when users try to optimize system performance through information exchange in real-time. Hence, statistical modeling of spectrum variations becomes essential in order to achieve near-optimal solutions on average. In this dissertation, we first study a stochastic modeling approach for dynamic spectrum access. Since the radio spectrum environment is highly dynamic, we model the traffic variations in dynamic spectrum access using continuous-time Markov chains that characterizes future traffic patterns, and optimize access probabilities to reduce performance degradation due to co-channel interference. Second, we propose an evolutionary game framework for cooperative spectrum sensing with selfish users, and develop the optimal collaboration strategy that has better performance than fully cooperating strategy. Further, we study user cooperation enforcement for cooperative networks with selfish users. We model the optimal relay selection and power control problem as a Stackelberg game, and consider the joint benefits of source nodes as buyers and relay nodes as sellers. The proposed scheme achieves the same performance compared to traditional centralized optimization while reducing the signaling overhead. Finally, we investigate possible attacks on cooperative spectrum sensing under the evolutionary sensing game framework, and analyze their damage both theoretically and by simulations
    • …
    corecore