5 research outputs found

    Newton acceleration on manifolds identified by proximal-gradient methods

    Full text link
    Proximal methods are known to identify the underlying substructure of nonsmooth optimization problems. Even more, in many interesting situations, the output of a proximity operator comes with its structure at no additional cost, and convergence is improved once it matches the structure of a minimizer. However, it is impossible in general to know whether the current structure is final or not; such highly valuable information has to be exploited adaptively. To do so, we place ourselves in the case where a proximal gradient method can identify manifolds of differentiability of the nonsmooth objective. Leveraging this manifold identification, we show that Riemannian Newton-like methods can be intertwined with the proximal gradient steps to drastically boost the convergence. We prove the superlinear convergence of the algorithm when solving some nondegenerated nonsmooth nonconvex optimization problems. We provide numerical illustrations on optimization problems regularized by â„“1\ell_1-norm or trace-norm

    A Riemannian BFGS Method Without Differentiated Retraction for Nonconvex Optimization Problems

    No full text
    In this paper, a Riemannian BFGS method for minimizing a smooth function on a Riemannian manifold is defined, based on a Riemannian generalization of a cautious update and a weak line search condition. It is proven that the Riemannian BFGS method converges (i) globally to stationary points without assuming the objective function to be convex and (ii) superlinearly to a nondegenerate minimizer. Using the weak line search condition allows to completely avoid the information of differentiated retraction. The joint matrix diagonalization problem is chosen to demonstrate the performance of the algorithms with various parameters, line search conditions and pairs of retraction and vector transport. A preliminary version can be found in [HAG16]
    corecore