35,587 research outputs found

    A Survey on Deep Learning-based Architectures for Semantic Segmentation on 2D images

    Full text link
    Semantic segmentation is the pixel-wise labelling of an image. Since the problem is defined at the pixel level, determining image class labels only is not acceptable, but localising them at the original image pixel resolution is necessary. Boosted by the extraordinary ability of convolutional neural networks (CNN) in creating semantic, high level and hierarchical image features; excessive numbers of deep learning-based 2D semantic segmentation approaches have been proposed within the last decade. In this survey, we mainly focus on the recent scientific developments in semantic segmentation, specifically on deep learning-based methods using 2D images. We started with an analysis of the public image sets and leaderboards for 2D semantic segmantation, with an overview of the techniques employed in performance evaluation. In examining the evolution of the field, we chronologically categorised the approaches into three main periods, namely pre-and early deep learning era, the fully convolutional era, and the post-FCN era. We technically analysed the solutions put forward in terms of solving the fundamental problems of the field, such as fine-grained localisation and scale invariance. Before drawing our conclusions, we present a table of methods from all mentioned eras, with a brief summary of each approach that explains their contribution to the field. We conclude the survey by discussing the current challenges of the field and to what extent they have been solved.Comment: Updated with new studie

    Machine and deep learning implementations for heritage building information modelling : a critical review of theoretical and applied research

    Get PDF
    Research domain and Problem: HBIM modelling from point cloud data has become a crucial research topic in the last decade since it is potentially considered as the central data model paving the way for the digital heritage practice beyond digitization. Reality Capture technologies such as terrestrial laser scanning, drone-mounted LiDAR sensors and photogrammetry enable the reality capture with a sub-millimetre accurate point cloud file that can be used as a reference file for Heritage Building Information Modelling (HBIM). However, HBIM modelling from the point cloud data of heritage buildings is mainly manual, error-prone, and time-consuming. Furthermore, image processing techniques are insufficient for classification and segmentation of point cloud data to speed up and enhance the current workflow for HBIM modelling. Due to the challenges and bottlenecks in the scan-to-HBIM process, which is commonly criticized as complex with its bespoke requirements, semantic segmentation of point clouds is gaining popularity in the literature. Research Aim and Methodology: Therefore, this paper aims to provide a thorough critical review of Machine Learning and Deep Learning methods for point cloud segmentation, classification, and BIM geometry automation for cultural heritage case study applications. Research findings: This paper files the challenges of HBIM practice and the opportunities for semantic point cloud segmentation found across academic literature in the last decade. Beyond definitions and basic occurrence statistics, this paper discusses the success rates and implementation challenges of machine and deep learning classification methods. Research value and contribution: This paper provides a holistic review of point cloud segmentation and its potential for further development and application in the Cultural Heritage sector. The critical analysis provides insight into the current state-of-the-art methods and advises on their suitability for HBIM projects. The review has identified highly original threads of research, which hold the potential to significantly influence practice and further applied research

    Segmentation and semantic labelling of RGBD data with convolutional neural networks and surface fitting

    Get PDF
    We present an approach for segmentation and semantic labelling of RGBD data exploiting together geometrical cues and deep learning techniques. An initial over-segmentation is performed using spectral clustering and a set of non-uniform rational B-spline surfaces is fitted on the extracted segments. Then a convolutional neural network (CNN) receives in input colour and geometry data together with surface fitting parameters. The network is made of nine convolutional stages followed by a softmax classifier and produces a vector of descriptors for each sample. In the next step, an iterative merging algorithm recombines the output of the over-segmentation into larger regions matching the various elements of the scene. The couples of adjacent segments with higher similarity according to the CNN features are candidate to be merged and the surface fitting accuracy is used to detect which couples of segments belong to the same surface. Finally, a set of labelled segments is obtained by combining the segmentation output with the descriptors from the CNN. Experimental results show how the proposed approach outperforms state-of-the-art methods and provides an accurate segmentation and labelling
    • …
    corecore